
Tech Demo
Backed by ASP.NET Web API 2 in Visual Studio 2013

Knockout.js

Steve Kollmansberger
Lead Developer, Bridge Preservation Applications

WSDOT Developers Conference
January 14, 2014

Follow along with the code: http://www.kolls.net/wsdot/ko2014

http://www.kolls.net/wsdot/ko2014

Traditional MVC

2

Model

View Controller

Ideal:

Clean separation of concerns

View: What’s in here?

The “View”

• Giant blended mess of HTML, C# (via Razor), and JS

• Mixing layout and behavior; no clean separation between data

and the “controls” that hold them, all in one file

• Looks like (bad) PHP; Tastes like WebForms

3

Ack. Need some

way to separate

data, behavior,

and display

What Do We Want?

Date, time and initials of last

edit
4

Aggressive separation of concerns

Testability

When Do We Want It?

NOW

Solution

5

Model

View Controller

Model

View ViewModel

We put an MVC in our MVC

So we can MVC while we MVC

(Technically, MVVM)

Separation of Concerns

6

Model

View Web API

Model

View ViewModel

Entity Framework

C# POCO

Server-Side

REST Service

Data Access

Business Logic

Knockout.js framework

Can serve thick client, etc.

Not HTML specific
Static HTML 5

With bindings

Connects

to Service

Observable

Properties;

Actions

Tech Demo

A judging/rating system

• Each person can be judge, or

competitor, or both

• All judges can judge (rating 1

to 10) all competitors

– Except if both, person can’t judge

themselves

• Display overall rankings based

on average rating

• Assume all persons “pre-

loaded” in database

7

I changed the name of the navigation

properties to be more clear.

Also, the rating is called “Rating1” in EF

because it conflicts with the type name.

Booleans

Tech Demo: Workflow

• Select Competitor from

dropdown

• Existing ratings shown, may be

deleted

• If any judges have not judged,

have a line to enter new rating

• If two or more ratings exist,

show average rating for this

competitor

8

Tech Demo: Workflow

• View all average ratings

• Sorted by rating

• All competitors with equal top

rating get “gold star”

• All competitors with equal

second rating get “silver star”

• Competitors with no ratings

don’t show a score (counted as

0)

9

Let’s Dig In!

10

Code: Server Side

• Controllers

– Return data, not HTML

– Web API handles JSON

mapping

– Uses HTTP verbs and

response codes

– Only an API

• POCO Models

– Perform business logic

– Fully testable

11

Server side is just API Service.

The “Amazon.com” Way:

All teams will henceforth expose their data and functionality

through service interfaces.

Teams must communicate with each other through these

interfaces.

There will be no other form of inter-process communication

allowed: no direct linking, no direct reads of another team’s data

store, no shared-memory model, no back-doors whatsoever. The

only communication allowed is via service interface calls over the

network.

It doesn’t matter what technology they use.

All service interfaces, without exception, must be designed from

the ground up to be externalizable. That is to say, the team must

plan and design to be able to expose the interface to developers in

the outside world. No exceptions.

Jeff Bezos, ~2002

NO HTML specific behavior

Code: Client Side

• Plain HTML (View)

– Could make header/footer with MVC views

– Uses knockout data binding (like razor in MVC)

– Uses knockout templates (like partial views in MVC)

• View Model

– Methods hit abstract “service”

– Stores data

– Testable

– Many more KO features exist!

• Model

– Connects to server API

– Performs logic specific to this client implementation

• Testable

12

In Production
MISSING from this demo

• Error Handling (see “fail” functions in ViewModel)

• Unit Tests

• Data Validation (Client and Server)

• JS Bundling (ASP.NET feature)

• Page Templates (Header/Footer)

13

Conclusions

• Web Applications are “applications” in every sense of the

word

• 1st class frameworks make it

– Tolerable

– Maintainable

– Testable

• Separation of concerns

• Remember: In the grim darkness of the far future, there is only

JavaScript

14

not-so-far

Tech Demo

Questions? Comments?

Knockout.js

Steve Kollmansberger
Lead Developer, Bridge Preservation Applications

WSDOT Developers Conference
January 14, 2014

Get the code: http://www.kolls.net/wsdot/ko2014

http://www.kolls.net/wsdot/ko2014

