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Preface

The breadth of topics in computer mathematics and logic have the potential to be among the
most interesting computational subjects you will study. Take out your phone. Start typing a text
message. How are the characters and words represented (Chapter 12)? How does the phone
calculate how many more characters you can type in the message (Chapter 10)? Attach a photo.
How is an image stored inside the phone (Chapter 13)? Send the message and image across
the wireless network. How is the information sent quickly (Chapter 16) and how are errors
prevented (Chapter 15)?

How is the phone’s software designed (Chapters 6, 19)? Even with such a small processor, how
were the designers able to make sure it would perform fast enough (Chapter 20)? Imagine the
insides of the phone. What are the “chips” made of (Chapter 8) and how do they make the phone
perform all its tasks (Chapter 17)?

This book offers to take you on a conceptual journey starting with only your knowledge of basic
algebra, all the way through the techniques of designers and programmers, and to explain along
the way how the miracle of modern computation is achieved.

This book was borne out of frustration with existing offerings in the computer mathematics and
logic arena. Many books are written for upper division undergraduates or graduate students.
Many books focus on limited subsets of the topics presented herein, or stray far and wide into
unrelated topics. Few books are willing to take on a broad spectrum of computer math at an
introductory level. Of books that do venture into such territory, many are painfully dated, dis-
cussing with gusto obsolete encodings and omitting modern standards.

This book is designed for the student with little to no computer programming or college math ex-
perience, but who has completed high school algebra. Each topic is presented with an emphasis
on conceptual understanding; as a result, not all topics are explored in complete depth. Spe-
cific advanced texts on each topic should be consulted should the student wish to delve further
beyond the basics. In order to remain within the basic algebra requirement, certain subtopics
requiring more advanced math have been omitted. In all cases explanations emphasize practical
and down-to-earth approaches rather than highly technical mathematical definitions.
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Layout

Throughout this text, pages will be divided into two
columns: the main column contains the primary text,
and the sidebar contains highlights, placed into boxes.

Definitions are shown with
the dictionary icon. All def-
initions also appear in the
glossary in the back.

Definitions are used to give a concise meaning of a term
that is likely to appear again throughout the chapter
or beyond. In all cases, short and practical definitions
are preferred over detailed and precise technical math-
ematical definitions.

Insights give helping hints
for problem solving, or
possible pitfalls to watch
out for.

Certain mathematical properties or formulas may be
shown using the math box in the sidebar. These for-
mulas may not be essential to being able to work with
the concepts described, but understanding them (and
why they are true!) is likely to be a great benefit. You
should work on discovering why these formulas are
true instead of simply accepting them at face value.

If n is negative, and p is
positive, then n < p

The author’s website is
http://www.kolls.net

In some chapters, computer software has been em-
ployed to assist in the creation of figures. In other
cases, various websites or software is recommended to
help work through certain types of problems. Links for
recommended websites and software will appear in a
box with the computer icon. The computer icon may
also be used to indicate computer or programmer re-
lated notes or limitations.

� Example 0.1 • Many concepts will be illustrated with
examples. To help avoid confusion, examples of more
than few sentences in length will be marked and num-
bered. �
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Chapter 1
Sets

A set is an unordered collection of items without du-
plicates. When we say “item”, we refer to any type of
thing: a set could consist of numbers, of letters, of ani-
mals, of planets, of people, of buildings, and so on. For
example, all the people who have read this book form
a set. All positive numbers also form a set. You could
define the set of all elephants in India. How about the
set of pink flying elephants? This is also fine, but it is
likely that this set contains no elements. A set which
contains no elements is referred to as the empty set.

Set: an unordered collec-
tion of items without dupli-
cates.

Empty set: the set contain-
ing no elements.

Universe: the set contain-
ing all possible items under
consideration.

When referring to sets it is helpful to always keep in
mind the universe for those sets. The universe is usu-
ally the largest set of items of the same type as the sets
in question. In some cases, the universe may be im-
plicit. In other cases, it should be defined directly. For
example, in the set of all people who have read this
book, the universe is likely to be all people. With the set
of all elephants in India, is the universe all elephants in
the world? Or is it all animals in India? Or... In such a
case, and in most cases, it is best to define the universe
explicitly so there is no possibility of confusion.

Finite Set: a set containing a
limited (although possibly
very large) number of ele-
ments.

Infinite Set: a set contain-
ing an unlimited number of
elements, usually defined
mathematically.

Sets may be finite (meaning they have a limited num-
ber of elements) or infinite. Finite sets would include
all people on planet Earth. Infinite sets are usually
numerical and include sets like all positive numbers.
Even sets which appear “small” could be infinite: for
example, the set of all reals between 1 and 2 is infinite.
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SECTION 1.1 | Set Notation 3

1.1 Set Notation

To facilitate discussion, a standard notation is usually
employed to describe sets. A set is often assigned a
name, usually just a single uppercase letter. The enu-
meration (list of elements) of the set itself is wrapped
in curly brackets and the elements are listed out, sep-
arated by commas. For example, consider the set of
all whole numbers between 1 and 10, inclusive. If we
called this set A, we could write it:

A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

Keep in mind that sets are unordered, which means
that the sequence of elements written has no meaning.
If we define B as follows:

B = {10, 1, 9, 2, 8, 3, 7, 4, 6, 5}

Unlike lists, sets have no
ordering. The sequence
that elements are written in
is coincidental and has no
meaning.

Then A = B (or, A is equivalent to B) because both sets
contain the same elements. Whenever two sets contain
the same elements, they are said to be equivalent.

Equivalent: two sets which
contain the same elements
are equivalent.

The two sets defined above, A and B are both finite
sets described using enumeration. Infinite sets can be
described using a conceptual notation. For example,
consider the set of all positive integers:

C = {x : x is a positive integer}

Here x is a variable representing a single element of the
set, and the range of x is described in words.

Here are some other examples of sets. The set of pri-
mary colors could be defined as P = {red, green, blue}.
The set of adult males in Canada could be defined as
M = {q : q is an adult male in Canada}. Note the use
of the conceptual notation, since the specific names of
all adult males in Canada is not immediately known
(and changes). The label q is simply a variable. The
variable is usually x, but q is used here to demonstrate
that any variable is possible.

In addition, special notation exists for the empty set
and the universe. The empty set is designated with ∅
or sometimes {}, and the universe is designated with
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U .

The number of elements in a set is called the cardinality
of that set, and shown with vertical lines on either side
of the set. For example, |A| = 10, given the value of A
above.

Cardinality: the number of
elements in a set.

Membership in a set is denoted by, for example, 3 ∈ A,
which claims the number 3 is in the set A (defined
above). A claim of non-membership is made by slash-
ing the operator, as in 26 /∈ B. These operators can be
used with the conceptual notation to define a set. For
example D = {x : x ∈ C, x /∈ A}. This set D then
contains all positive integers greater than 10.

1.2 Set Operations

Sets can be manipulated using three main operators:
union, intersection, and complement. The union of
two sets is the set of all elements that appear in either
or both of the original sets. Union is defined with the
symbol ∪. The intersection of two sets is the set of all
elements that appear in both of the original sets. Inter-
section is defined with the symbol ∩. The complement
of a set is the set of all the elements in the universe
that do not appear in the original set. The complement
only has meaning if the universe is known or somehow
described. Complement is defined with the ′ or some-
times c.

Union: the set of all ele-
ments that appear in either
or both of the original sets.

Intersection: the set of all el-
ements that appear in both
of the original sets.

Complement: the set of all
the elements in the uni-
verse that do not appear in
the original set.

� Example 1.1 • Assume we define the sets A =
{1, 2, 3} and B = {3, 4, 5}. In that case, the union of
the two sets, represented as A ∪ B, contains the five
elements which appear in either or both sets, namely
{1, 2, 3, 4, 5}. Remember that order is not important, so
it’s also true that A ∪B = {5, 4, 1, 3, 2}.

Continuing with the previous definition of A and B,
the intersection of the two sets, represented as A ∩ B,
contains the individual element which appears in both
sets, namely {3}. In the event that the sets did not share
any elements in common, the intersection would be the
empty set. For example, {1, 2, 3} ∩ {5, 6, 7} = ∅. In this
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case, the sets are referred to as disjoint.

In order to determine the complement of some
set, we must first know what the universe is.
For this example, we’ll define the universe as
U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. In that case, A′ =
{4, 5, 6, 7, 8, 9, 10}, that is, all elements in the universe
which do not appear in A. �

Be sure not to place dupli-
cate elements in the result
of a union operator. Sets
don’t contain duplicates!

Disjoint: two sets that do
not share any elements in
common.

|A∪B| = |A|+ |B|− |A∩B|

A′ may be read as A prime

Set operations can be combined into set statements
or expressions using a standard order of operations.
Parentheses are evaluated first, then complement, then
intersection, and finally union.

� Example 1.2 • Using the definitions of A, B, and U
provided previously, consider the expression A ∩B′.

1. A ∩B′

2. {1, 2, 3} ∩ {3, 4, 5}′ (insert set definitions)

3. {1, 2, 3} ∩ {1, 2, 6, 7, 8, 9, 10} (apply complement)

4. {1, 2} (apply intersection)

Therefore, A ∩B′ = {1, 2}. �

� Example 1.3 • Consider a more complex example:
A ∪ B ∩ A′. Intersection has higher precedence than
union, so the intersection will be evaluated before the
union (but after the complement).

1. A ∪B ∩ A′

2. {1, 2, 3}∪{3, 4, 5}∩{1, 2, 3}′ (insert set definitions)

3. {1, 2, 3}∪{3, 4, 5}∩{4, 5, 6, 7, 8, 9, 10} (apply com-
plement)

4. {1, 2, 3} ∪ {4, 5} (apply intersection)

5. {1, 2, 3, 4, 5} (apply union)

�

These operations apply to infinite sets as well.
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� Example 1.4 • Let U = {x : x is an integer}, A = {x :
x is a positive integer}, and B = {1, 2, 3, 4, 5}. What set
is described by A′ ∩B′?

1. A′ ∩B′

2. {x : x is a positive integer}′ ∩ {1, 2, 3, 4, 5}′ (insert
set definitions)

3. {x : x is a negative integer, or zero } ∩ {x : x is an
integer less than 1 or greater than 5} (apply com-
plements - notice that B is finite but B′ is infinite)

4. {x : x is a negative integer, or zero } (apply inter-
section - notice that we have to reason about how
these sets may overlap, specifically that the “neg-
ative” part of the first set overlaps with the “less
than 1” part of the second)

Therefore A′ ∩ B′ = {x : x is a negative integer, or zero
}. �

When dealing with de-
scribed numeric sets, con-
sider drawing a number
line to help reason about
what the union, intersec-
tion, or complement will
be.

In addition to equivalence, described earlier, sets can
also be related through the concept of subset. A set is a
subset of another set if all of the elements in the first set
appear in the second. The subset is shown as A ⊆ B,
indicating that all elements in A appear in B. It is also
possible that A = B.

Subset: all of the ele-
ments of a set are contained
within another set.

If A ⊆ B, then |A| ≤ |B|

If A ⊆ B and B ⊆ A, then
A = B

A special form of subset is the proper subset, which
strengthens the claim of subset. A ⊂ B claims that not
only is every element in A also in B, but there is some
element in B that does not appear in A. If A ⊂ B, then
it is not possible that A = B.

Proper Subset: all of the ele-
ments of a set are contained
within another set, and the
other set also has at least
one additional element.

If A ⊂ B, then |A| < |B|

If A ⊂ B, then A ⊆ B

If there is an element in A which does not appear in B,
then we can say A ̸⊆ B.

� Example 1.5 • For example, let’s assume that A =
{1, 2, 3}, B = {3, 4, 5}, C = {1, 5, 7} and U =
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Determine if A∪ (B ∩C) ⊂ C.

1. A ∪ (B ∩ C) ⊂ C

2. {1, 2, 3}∪({3, 4, 5}∩{1, 5, 7}) ⊂ {1, 5, 7} (insert set
definitions)
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3. {1, 2, 3}∪ ({5}) ⊂ {1, 5, 7} (parentheses first - per-
form intersection)

4. {1, 2, 3, 5} ⊂ {1, 5, 7} (perform union)

5. {1, 2, 3, 5} ⊂ {1, 5, 7} (check if all elements in the
left set appear in the right set; plus at least one
more element in the right set)

We do not find all elements from the first set in the sec-
ond set, therefore, A ∪ (B ∩ C) ̸⊂ C. �
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1.3 Exercises

Solutions to these exercises can be found in Appendix A.1 on page 241.

Assume A = {1, 2, 3}, B = {2, 3, 4},
C = {4, 5, 6}, D = {1, 3, 5}, U =
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

1. Problem: Find the set described by A ∪
(B ∩D′)′.

2. Problem: Find the set described by A ∪
B ∩D.

3. Problem: Determine if A ∩B ⊂ B ∪D.

4. Problem: Find |A ∩ C|.

Assume M = {x : x is a math student},
C = {x : x is a CIS student}, and V = {x : x
plays videogames}. Let U = {x : x is a stu-
dent at the college}. Note that all sets must
be subsets of the universe, so in this case the

set V implicitly is limited to only those stu-
dents at the college who play videogames;
not videogame players outside the college.

5. Problem: Write a set expression which
gives the set of all CIS students who
play videogames.

6. Problem: Write a set expression which
gives the set of all students who play
videogames and are either math or CIS
students, or both.

7. Problem: Write a set statement which
indicates that all CIS students play
videogames.

8. Problem: Write a set statement which
indicates that some math students
don’t play videogames.



Chapter 2
Counting

Permutations and combinations describe a set of math-
ematical rules used for counting the number of possi-
ble arrangements of a set of items. Knowing how many
possibilities we may need to deal with is important to
ensure that a computer program has sufficient capacity
to handle whatever may possibly come its way.

2.1 Additive and Multiplicative
Counting

If we are choosing just one item from two sets, A and
B, then the number of possible choices is |A|+ |B|.

For example, let’s say A = {salad, soup} and B =
{ham, eggs, pancakes}. If we are to choose one of these,
then there are a total of five possible choices. Specifi-
cally, C = {salad, soup, ham, eggs, pancakes}.

Additive Counting Rule:
When selecting just one
item from several sets,
the total number of pos-
sibilities is the sum of the
cardinalities of the sets.

On the other hand, let’s say that instead of choosing
just one item, we chose one item from each set. In
other words, if we have n sets, then we are choos-
ing n items, one from each set. Using the same sets
as above, we might choose salad and ham; alterna-
tively, we might choose soup and pancakes. In this
case, there are a total of six possible choices, defined
by |A| ∗ |B|. Specifically, C = {{salad, ham}, {salad,

9



10 CHAPTER 2 | Counting

eggs}, {salad, pancakes}, {soup, ham}, {soup, eggs}, {
soup, pancakes}}.

Multiplicative Counting
Rule: When selecting one
item from each of several
sets, the total number of
possibilities is the product
of the cardinalities of the
sets.

These two rules are the foundation for more compli-
cated techniques of counting.

2.2 Preliminaries

It is convenient to define two mathematical functions
to assist us in further definitions. The factorial of a pos-
itive integer n is defined as the multiplication of all in-
tegers starting at 1 and going up to and including n.
The factorial is indicated with the ! symbol. For exam-
ple, 5! = 1 ∗ 2 ∗ 3 ∗ 4 ∗ 5 = 120.

Factorial: the product of in-
tegers from 1 up thru some
given number, indicated by
the exclamation point.

Let 0! = 1, and then n! =
(n− 1)! ∗ n

Let’s say that 5! = 120 has been found above. What is
7!? We could define 7! = 7 ∗ 6 ∗ 5! (because 5! provides
the multiplication of all remaining numbers). Thus
7! = 7 ∗ 6 ∗ 120 = 5040. When solving multiple fac-
torial problems, this shortcut can save some time.

The factorial definition can be used in the definition
of the binomial coefficient. The binomial coefficient,

written as
(
n

r

)
, defines the number of ways to select r

items from a set of n (more on this later). The binomial
coefficient is defined in terms of factorial:

Binomial Coefficient: For-
mally, coefficient of the xr

term in the polynomial ex-
pansion of (1 + x)n. Prac-
tically, the number of ways
to select r items from a set
of n. (

n

r

)
=

n!

r! ∗ (n− r)!

(
n

n− r

)
=

(
n

r

)
Many calculators support
the binomial coefficient
with a button labeled nCr,
short for n choose r.

Another way to determine the binomial coefficient is to
use Pascal’s Triangle. Pascal’s Triangle is, in fact, based
on the polynomial coefficients but these values can be
determined row-by-row in the triangle. The top row
contains just the value 1. The second row contains the
values 1 and 1. Then, for each subsequent row, place
1s on the outside and fill the middle by adding the two
values above. This is easiest to understand through a
diagram:
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n = 0: 1

n = 1: 1 1

n = 2: 1 2 1

n = 3: 1 3 3 1

n = 4: 1 4 6 4 1

n = 5: 1 5 10 10 5 1

Notice the 2 in the third row is the sum of the two
1s above it (diagonally). Likewise, the 3 in the fourth
row is the sum of 1 + 2, the two numbers immediately
above it. This property continues throughout the trian-
gle. The 10 in the sixth row is defined as 4 + 6, the sum
of the two numbers above it.

Why is Pascal’s Triangle interesting? For any binomial

coefficient,
(
n

r

)
, we can choose the nth row (with the

first row being n = 0), and then from left to right,
choose the rth value (with the first value being r = 0).
This is the result of the binomial coefficient.

� Example 2.1 • For example, using the triangle above,

let’s solve
(
4

2

)
. First we choose the fifth row (where

n = 4), and then count over to the third value (the
first value would be r = 0, and so on). This value is

6. Therefore,
(
4

2

)
= 6.

Any row in Pascal’s Trian-
gle can be calculated di-
rectly by expanding (a+b)n

where n is the row number.
For example, if n = 5 then
(a+b)5 = a5+5a4b+10a3b2+
10a2b3 + 5ab4 + b5. The co-
efficients here are, in order
1, 5, 10, 10, 5, 1 - the same as
that row in Pascal’s Trian-
gle.

We can check this work by using the factorial defini-

tion:
n!

r! ∗ (n− r)!
=

4!

2! ∗ (4− 2)!
=

1 ∗ 2 ∗ 3 ∗ 4
1 ∗ 2 ∗ 1 ∗ 2

=
24

4
=

6. �

Using these two tools of factorial and binomial coeffi-
cient, we are ready to define four key permutation and
combination counting formulas.
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2.3 Two Key Questions

In order to solve a counting problem which falls into
the permutation/combination category (that is, select-
ing or choosing some items from a set of items), two
questions must be answered:

First, is order important? For example, if I am choos-
ing numbers for a combination lock, then 4-2-1 is dif-
ferent from 2-1-4. In this case, order is important. On
the other hand, consider the case where I want to elect
4 representatives from a group of 100 people. In that
case, each representative is equal and so order is not
important.

Second, is repetition allowed? For example, if I am
selecting four appetizers from a menu of ten, I could
choose the same appetizer twice or more. In this case,
repetition is allowed. On the other hand, to use the
same representatives example as above, the 4 repre-
sentatives must all be distinct individuals - one person
could not serve as three of the representatives. In that
case, repetition is not allowed.

If we want to select more
items than actually exist in
the original set, repetition
must be allowed and used.
For example, if I order 10
appetizers from a menu of
8 appetizers, there must be
some repetition.

If order is important, then one of the permutation for-
mulas is used. If order is not important, then one of the
combination formulas is used.

A fun and easy calcula-
tor with permutations and
combinations can be found
at http://www.
mathsisfun.com/
combinatorics/
combinations-
permutations-
calculator.html

Permutation: A selection of
items from a set where the
order of selection is impor-
tant.

Combination: A selection of
items from a set where the
order of selection is not im-
portant.

Both permutations and combinations can appear either
with repetition, or without. This forms four possibili-
ties. Assuming that we have a set of n items and we are
choosing r of them, here are the formulas:

Repetition No Repetition

Permutation nr n!

(n− r)!

Combination
(
n+ r − 1

r

) (
n

r

)

2.4 Sample Applications

It can be difficult to determine when to use which for-
mula (much more difficult than simply applying the

http://www.mathsisfun.com/combinatorics/combinations-permutations-calculator.html
http://www.mathsisfun.com/combinatorics/combinations-permutations-calculator.html
http://www.mathsisfun.com/combinatorics/combinations-permutations-calculator.html
http://www.mathsisfun.com/combinatorics/combinations-permutations-calculator.html
http://www.mathsisfun.com/combinatorics/combinations-permutations-calculator.html
http://www.mathsisfun.com/combinatorics/combinations-permutations-calculator.html
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formula). To assist in this determination, here are
four example situations, one corresponding to each for-
mula.

� Example 2.2 • In the case of permutations with repe-
tition, consider the case of determining how many dif-
ferent license plates are possible. A license plate con-
sists of a sequence of symbols. The order of the sym-
bols matters (so ABC is different from CBA) and it is al-
lowable to reuse a symbol (so the sequence AA11 could
appear on a plate).

Thus, the number of license plates could be counted
using permutations with repetition. If a certain kind of
license plate had six symbols, and each symbols could
be an uppercase letter or digit, then the number of pos-
sible plates would be found with 366. �

� Example 2.3 • In the case of permutations without
repetition, consider the case of a karaoke contest. In
the contest, each performer sings once (so no repeti-
tion), but performers must be ordered. It is a different
sequence if performer A goes first or last, and so on.

Thus, the number of ways to sequence a karaoke con-
test could be counted using permutations without rep-
etition. If a certain contest had 13 contestants (and all
13 were to sing), then the number of possible sequences

would be found with
13!

(13− 13)!
. �

� Example 2.4 • In the case of combinations without
repetition, consider the case of the selection of repre-
sentatives from a group. A certain group of people
wish to elect (or have selected) a subset of representa-
tives from among them. In this case, each spot has to be
filled by a different person (if I ask for five representa-
tives, you can’t send one person and claim that person
fills all five spots). Likewise, there is no significance of
ordering; the group is traveling as a set (no duplicates,
no ordering). In any case where the selection is to pro-
duce a set, combinations without repetition is probably
appropriate.

Thus, the number of ways to select a set of represen-
tatives could be counted using combinations without
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repetition. If a certain group had 120 people, and 7 rep-
resentatives were selected, then the number of possible

representative sets would be found with
(
120

7

)
. �

� Example 2.5 • Finally, in the case of combinations
with repetition, consider the case of a raffle of identical
items. Assuming no limit on the distribution of raffle
tickets, it is possible for one person to win all the prizes
in a raffle. In this case, the repetition comes from select-
ing the winner; the same winner may be selected multi-
ple times (if they hold multiple tickets). Likewise, since
all prizes are identical, there is no concept of ordering:
the first winner and the last winner receive exactly the
same prize.

Thus, the number of ways to select the winners of
a raffle with identical prizes and no limit on tickets
could be counted using combinations with repetition.
If there were a group of 15 players (each with “unlim-
ited” tickets), and 3 prizes, then the number of ways
the prizes could be distributed would be found with(
15 + 3− 1

3

)
. �

2.5 Explanation of Formulas

In order to calculate permutations and combinations,
the previously given four formulas, together with the
definitions of factorial and binomial coefficient, are suf-
ficient (as long as we are able to determine correctly
whether or not order is important and whether or not
repetition is allowed).

However, discovering a little more about why these
formulas work may be interesting.

Permutations with repetition, defined by nr, indicates
that we are choosing out of n items r times, and that
we may repeat some items. In this case, for the first
item we can choose one of n possibilities. For the sec-
ond item, we can, again, choose from n possibilities,
and so on. In general, independent choices are multi-



SECTION 2.5 | Explanation of Formulas 15

plied together to find the total number of choices pos-
sible. Therefore, we are multiplying n ∗ n ∗ n ∗ n... up
to r times. This is based on the multiplicative counting
rule. Exponent notation gives a shorthand for this in
nr.

Permutations with repeti-
tion is commonly used in
computer programming to
determine how large of a
number can be stored in a
certain amount of space, or
how many items can be ad-
dressed with a certain ad-
dress size. See the exercises
at the end of this chapter
for examples.

How about permutations without repetition, defined

by
n!

(n− r)!
? If I want to choose r items out of n items,

without repetition, then every time I make a choice I
have one less item available. For the first item, there
are n possibilities. For the second, there are n − 1
possibilities. For the third, n − 2 possibilities, and so
on. The definition of factorial, n!, starts out this way:
n! = n∗ (n−1)∗ (n−2)∗ (n−3)∗ ...∗3∗2∗1. However,
we only want to have the first r terms of the factorial,
not all n terms.

In order to eliminate the later factorial terms that are
undesirable, they are canceled using division by (n −
r)!. The term (n − r)! will start at the first unneeded
term and proceed down to 1.

� Example 2.6 • This is best seen by use of an exam-
ple. Let’s assume we have n = 10 and r = 3. That is,
we have 10 items and wish to choose 3 of them without
repetition. In that case, using the multiplicative count-
ing rule, there are 10 ∗ 9 ∗ 8 possibilities. The value
10! = 10 ∗ 9 ∗ 8 ∗ 7 ∗ 6 ∗ 5 ∗ 4 ∗ 3 ∗ 2 ∗ 1. So if we could
cancel out the 7∗6∗5∗4∗3∗2∗1 part, that answer would
be correct (it would give us the 10 ∗ 9 ∗ 8 we’re looking
for). Notice the value we wish to cancel is simply 7!,
the same as (10− 3)!.

n!

(n− r)!
=

10!

(10− 3)!
=

10 ∗ 9 ∗ 8 ∗ 7 ∗ 6 ∗ 5 ∗ 4 ∗ 3 ∗ 2 ∗ 1
7 ∗ 6 ∗ 5 ∗ 4 ∗ 3 ∗ 2 ∗ 1

=

10 ∗ 9 ∗ 8 = 720 �

Disallowing repetition
will never result in more
choices.

Combinations without repetition, expressed with the

binomial coefficient
(
n

r

)
can be explained with a sim-

ilar reduction. First, keep in mind that the binomial

coefficient expands to
n!

r! ∗ (n− r)!
. With the exception
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of the r! term on the bottom, this is the same as the per-
mutations without repetition just shown.

For combinations (where order does not matter) we
start with the formula for permutations (where order
does matter) and eliminate those cases which are du-
plicated due to ordering. How many cases is that? As-
sume we are choosing three items (r = 3). In that case,
if we choose items a, b, and c, then there are 3! possible
orderings of these specific values (by the multiplicative
counting rule). We want to reduce that down to one
possible selection (as order does not matter).

If repetition is held con-
stant, the number of possi-
ble combinations is always
less than or equal to the
number of permutations.

This is why, if we take the permutations without rep-
etition, we can remove ordering by dividing the result
by r! where r is the number of elements we selected.

Finally, consider combinations with repetition, repre-

sented by
(
n+ r − 1

r

)
. The best way to think about

combinations with repetition is to imagine that an ar-
bitrary ordering has been placed on the items to be se-
lected. We then go down the list, saying either “take”
or “next”. As long as we say “take”, we get one of those
items (and stay on the same item in the list). When we
say “next” we move to the next item. The sequence
ends when all elements have been considered. In other
words, there must be exactly n− 1 “next”s. The reason
for n − 1 is that we start, by default, on the first item
and so there is no “next” to arrive there. Further, be-
cause we are choosing r items, there must be exactly r
“take”s.

Think of this as having r+(n−1) positions, and of these
positions, r of them will be selected to be “take”s and
the remaining n−1 will be “next”s. The order in which
we select the “take”s is not important – each position is
unique, but if I say I’m going to take the first, and the
third, that’s the same as saying I’m going to take the
third, then the first.

We can represent the collection of “take”s and “next”s
as a list of commands (the commands being “take” or
“next”). The list of commands, consisting of n − 1
“next”s and r “take”s, is run in sequence. The absence
of a “next” command causes two adjacent “take” com-
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mands to select the same item.

In order to specify the contents of this list, we can start
the list consisting entirely of “next”s, and then select
which positions in the list to replace the “next” with a
“take”. Repetition is not allowed because we are choos-
ing positions in the command list, and each position
has exactly one command. So, for example, if position
3 is chosen to hold a “take”, we would only select po-
sition 3 once.

We can then represent combinations with repetition us-
ing a modified formula and combinations without rep-
etition: we are choosing, without repetition, r positions
in an r+(n−1) command list to “take”. Plugging these
values into the formula for combinations with repeti-

tion gives us
(
n+ r − 1

r

)
.

2.6 Partition Rule

The partition rule allows a form of combination with-
out repetitions when multiple groups (of different
sizes) are used. The total size of all groups must equal
the original number of elements; if not, a final “blank”
group can be created. Assume n is the number of ob-
jects to choose from, and the group sizes are denoted
by r1, r2, r3, ... where all these values sum to n.

Partition Rule: A technique
for counting the number of
possible divisions of some
set into various unequal
groups.

In that case, the number of possible selections is repre-

sented by
n!

r1! ∗ r2! ∗ r3! ∗ ...
.

� Example 2.7 • For example, assume we have 10 chil-
dren (it’s a daycare or something). We want to assign
three to clean up the yard, four to help paint the down-
stairs and three to wash the family car. In how many
different ways can we group the children?

In this case, n = 10, r1 = 3, r2 = 4, r3 = 3. Note that

n = r1+r2+r3. Filling in the formula, we get
10!

3! ∗ 4! ∗ 3!
.

�
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2.7 Exercises

Solutions to these exercises can be found in Appendix A.2 on page 244.

1. Problem: Sam buys a box of mixed
chocolates. The box contains 3 nut va-
rieties, 5 truffle varieties, 3 caramels,
and 2 hard chocolates. Suzie opens
the box first and eats 4 chocolates; but
she doesn’t like truffles or hard choco-
lates, so she won’t eat any of those.
Sam doesn’t like nut varieties or hard
chocolates. How many chocolates are
left that Sam might like?

2. Problem: Given that |A| = 5 and |B| =
11, but not knowing the details of the
contents, what is |A ∩B|?

3. Problem: Given that |A| = 4 and |B| =
6, but not knowing the details of the
contents, what is |A ∪B|?

4. Problem: An IPv4 network address con-
sists of 32 bits. Each bit has two possi-
bilities (0 or 1). What is the maximum
theoretical number of possible IPv4 ad-
dresses?

5. Problem: There are 6 boxes numbered 1,
2, 3, 4, 5, and 6. Each box is to be filled
up either with a red or a green ball

in such a way that at least 1 box con-
tains a green ball and the boxes con-
taining green balls are consecutively
numbered. How many different ar-
rangements are possible?

6. Problem: How many different four let-
ter words can be formed (the words
need not be meaningful) using the let-
ters of the word MEDITERRANEAN
such that the first letter is E and the last
letter is R?

7. Problem: How many ways can a class
of six people be split into two equal
groups if there is no distinction be-
tween the groups?

8. Problem: A restaurant offers the fol-
lowing menu: select either an entree
or a burger. There are three entrees
available, and each entree comes with
two sides. There are four sides to
choose from. We can choose two of the
same side, if desired. If we choose the
burger, on the other hand, there are five
different burgers available, but burg-
ers do not come with any sides. How
many different selections are possible?



Chapter 3
Venn Diagrams

Venn diagrams are a visual tool for describing how sets
are related. A Venn diagram consists of a rectangular
area which encompasses the universe, U . Each set un-
der consideration appears, usually as a circle or oval,
within this rectangle. The various sets are arranged in
such a way that all possible set relationships could be
diagrammed. Thus, the various sets must overlap in
all possible ways.

Venn Diagram: a visual rep-
resentation of a set expres-
sion.

If a Venn diagram visual-
izes n sets, then it must
have 2n distinct regions.

Venn diagrams are particularly useful for comparing
two set expressions to see if they are equal (equivalent
set expressions will have the same Venn diagram), as
well as for simplifying set expressions, a concept dis-
cussed further in the next chapter. Venn diagrams in this

book are produced us-
ing the Venn Visual-
izer software found at
http://www.sf.net/
projects/vennvis

Venn diagrams do not depend on particular details
about the universe or the sets being visualized: they
are constructed entirely from a set expression. For now,
let’s imagine that we have two sets A and B within the
universe U .

The empty set ∅ is visualized by filling in nothing:

19
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Notice that the sets A and B each have an overlapping
circle, but these areas are not filled in because we have
neither the set A nor the set B. The area outside of the
circles represents those parts of the universe in neither
set A nor set B. Again, because our expression is ∅,
nothing is filled in.

If we visualize the set A, we fill in just the A circle:

Notice that the entire A circle is filled in, including
those portions which overlap with B (the middle sec-
tion) and those portions which only appear in A.

Although part of B is filled
in (due to the overlap with
A), this does not necessar-
ily guarantee that a spe-
cific set B does contain el-
ements in common with A;
it only says that if the set
B does contain elements in
common with A, then by
selecting the set A we get
those elements as well.

If we visualize the universe U , then the entire diagram,
including all sets, is filled in:

3.1 Set Operations

Each set operation can be defined as a function with
takes one (complement) or two (union and intersec-
tion) Venn diagrams and produces a new diagram. The
complement operator “inverts” the fill on a Venn dia-
gram; whatever was filled in becomes blank, and what-
ever was blank becomes filled in. The union operator
takes whatever was filled in either or both of the orig-
inal diagrams and fills that in the new diagram. The
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intersection operator takes whatever was filled in both
of the original diagrams and fills that in the new dia-
gram.

Given that the set A is visualized by:

Then the set A′ (complement of A) is visualized by:

If we consider the visualization of A (shown above)
and the visualization of B:

Then the operation of A ∪ B (union of A with B),
defined as all elements in A together with all elements
in B (including elements in both) is visualized by:

The operation of A ∩ B (intersection of A with B),
defined as all elements that appear in both A and B, is
visualized by:
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3.2 Other Set Operations

Besides the standard operations of complement, union,
and intersection, several other convenient set opera-
tions may be defined.

The set difference of two sets, written A \ B, is all ele-
ments in A that do not appear in B. The set difference
may also be called the relative complement. The set
difference A \B can be visualized by:

Set Difference: the set of all
elements that appear in the
first set but not the second
set.

A \B = B′ ∩ A

The symmetric difference of two sets, written A△B, is
all the elements in either A or B, but not both. In logic,
this operation is commonly referred to as exclusive or.
The symmetric difference A△B can be visualized by:

Symmetric Difference: the
set of all elements that ap-
pear in the first set or the
second set, but not both.

A△B = (A ∪B) ∩ (A ∩B)′

3.3 Creating a Venn Diagram

Your best choice for creating a Venn diagram is to use
a computer program to assist you. However, if no pro-
gram is available, it is certainly possible to create a
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Venn diagram for any set expression by hand. The gen-
eral procedure for creating a Venn diagram by hand is:

1. Following order of operations, start at the inner-
most operation.

In many cases, you may
be able to sketch a Venn
diagram by simply reason-
ing through these steps in
your head without exces-
sive scratch paper or inter-
mediate results.

2. If the innermost item is a set symbol, fill the ap-
propriate circle for that symbol.

3. When dealing with a union, overlap the left and
right Venn diagrams. Create a new Venn diagram
filling in all areas filled in on either diagram.

4. When dealing with an intersection, overlap the
left and right Venn diagrams. Create a new Venn
diagram filling in only the areas filled in on both
diagrams.

5. When dealing with complement, create a new
Venn diagram filling in all areas not filled in on
the original diagram.

6. Repeat this process, moving upwards and out-
wards, until all operations have been processed.

Turning a set expression
into words can also help
with visualization. For ex-
ample, A∩B′ can be read as
“everything in A that’s also
not found in B”.

� Example 3.1 • For example, let’s create by hand the
Venn diagram for the set expression A ∩B′.
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First, find the inner-
most set B:

The complement is
the next step, so fill
in the opposite of
everything that was
filled in before:

Next, determine the
set A:

Finally, overlap A
with B′ and, be-
cause it is intersec-
tion, fill in those ar-
eas in common:

�

3.4 Higher Order Venn Diagrams

As the number of sets to be visualized increases, the
diagram complexity grows exponentially. In order to
provide for all possibilities of n sets, we must consider
that each set is either included or excluded. Because
each yes or no refers to a different set from the others,
order is important, and repetition (multiple yes or mul-
tiple no) is allowed. That is how to discover that to rep-
resent n sets, you must have 2n regions. With just two
sets, as shown above, only four regions are needed: the
universe outside of both sets; just the A part, just the B
part, and the intersection sliver of both A and B.

A Venn diagram of three sets is commonly represented
with three overlapping circles. Note that there are eight
regions; including none of the sets, each set by itself,
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every pair of sets, and the intersection of all three sets.
This diagram visualizes the expression (A ∪ B ∪ C) ∩
(A ∩B ∩ C)′.

Three sets is the highest number normally done by
hand; diagrams of more than three sets become more
difficult to reason about and generally less helpful.
However, visualizing four, five, and even more sets
is theoretically possible. Plain overlapping circles no
longer suffice for diagrams of these orders, and other
shapes are used: ovals, rectangles, or a mixture of var-
ious shapes.

Here is a Venn diagram of four sets. Notice the tiny
area near the bottom which is filled in. This diagram is
visualizing A∩B∩C ′∩D. The relative size of the areas is
not significant in any particular way: it does not imply
that the number of elements in this area is smaller than
the number of elements in any other area. It is just an
artifact of the particular visualization technique.
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3.5 Exercises

Solutions to these exercises can be found in Appendix A.3 on page 248.

1. Problem: Draw a Venn diagram to visu-
alize A′ ∪B′ ∩ C.

2. Problem: Determine if A′∩B′ = (A∪B)′.

Let the universe be customers of a bank. Let
the set A = {x : x has a savings account},
B = {x : x is a preferred customer}, and
C = {x : x has a checking account}.

3. Problem: Draw a Venn diagram illus-
trating preferred customers who don’t
have a savings account.

4. Problem: Draw a Venn diagram illus-
trating non-preferred customers, ex-
cept those who hold both a checking
and savings account.

5. Problem: Determine a set expression
that matches the following Venn dia-
gram:

6. Problem: Symmetric difference is de-
fined earlier in this chapter as A△B =
(A∪B)∩ (A∩B)′. An alternative defi-
nition of symmetric difference is given
by A△B = (A\B)∪ (B \A). Prove that
these two definitions are equivalent.

7. Problem: How many different Venn di-
agrams of two sets are possible?

8. Problem: There are four possible Venn
diagrams of one set. Enumerate set ex-
pressions for each.
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Simplifying Set
Expressions

Set expressions derived from other sources, such as
Venn diagrams, can be needlessly complex. Complex
set expressions may result in difficult to understand
and maintain computer programs. If these expressions
can be simplified before they are used as a basis for pro-
gram logic, then the implemented program logic will
be shorter and easier to understand.

In order to assist in simplification, we’ll take advantage
of a variety of algebraic properties of set expressions
that allow us to transform expressions meeting a cer-
tain pattern into another expression, guaranteed to be
equivalent.

4.1 Algebra Laws of Sets

Many of the set algebra
rules mirror arithmetic al-
gebra rules, and go by the
same or similar names.

In these laws, the variables x, y, and z may represent
any set expression or single set variable. Multiple uses
of the same variable in one rule must all be identical
expressions. For example, if we take the simple law
x ∪ x = x, this could be applied to the set expression
(A ∪ (B ∩ C)) ∪ (A ∪ (B ∩ C)). In that case, we would
let x = (A ∪ (B ∩ C)), find that the set expression met
the pattern, and reduce it to simply A ∪ (B ∩ C). In all

27



28 CHAPTER 4 | Simplifying Set Expressions

cases, a rule can be applied in either direction; either
transforming an expression that meets the left pattern
into the right pattern, or vice versa.

Idempotent Laws
1a. x ∪ x = x 1b. x ∩ x = x

Associative Laws
2a. (x ∪ y) ∪ z = x ∪ (y ∪ z) 2b. (x ∩ y) ∩ z = x ∩ (y ∩ z)

Commutative Laws
3a. x ∪ y = y ∪ x 3b. x ∩ y = y ∩ x

Distributive Laws
4a. x ∪ (y ∩ z) = (x ∪ y) ∩ (x ∪ z) 4b. x ∩ (y ∪ z) = (x ∩ y) ∪ (x ∩ z)

Identity Laws
5a. x ∪∅ = x 5b. x ∩ U = x
5c. x ∪ U = U 5d. x ∩∅ = ∅

Double Negation Law
6. x′′ = x

Complement Laws
7a. x ∪ x′ = U 7b. x ∩ x′ = ∅
7c. U ′ = ∅ 7d. ∅′ = U

DeMorgan’s Laws
8a. (x ∪ y)′ = x′ ∩ y′ 8b. (x ∩ y)′ = x′ ∪ y′

Absorption Laws
9a. x ∪ (x ∩ y) = x 9b. x ∩ (x ∪ y) = x

Any of these laws can be applied to a set expression
or complete subexpression, and the transformation is
guaranteed to be equivalent.

4.2 Explanation of Laws

The laws themselves are sufficient for simplifying set
expressions, however, it may be useful to understand
the meaning and significance behind each law.

Idempotent: a function that,
given two equal values, re-
turns that value as the re-
sult.

The idempotent laws state that the union or intersec-
tion of a set with itself is simply that set. Thus, any such
union or intersection appearing in a set expression can
be cut in half to just show the main expression.

Associative: a function
that, in a sequence of that
function, the arrangement
of parentheses can be
changed without changing
the final result.
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The associative law states a series of unions, or a se-
ries of intersections, can be done in any order (remem-
ber parentheses are done first, so they control the order
of operations). It is important to note that the associa-
tive law only holds when all the operations in question
are unions or all intersections; a mix of unions and in-
tersections does not generally hold under association;
A ∪ (B ∩ C) ̸= (A ∪B) ∩ C.

Make sure you exactly
match the unions and in-
tersections in a rule to your
set expression before you
apply it. Some rules only
work on certain arrange-
ments of unions and/or
intersections.

Commutative: a function
whose order of parameters
can be swapped without
changing the final result.

The commutative law, in this case logically extending
the associative law, states that union and intersection
consider their left and right parameters equally; there
is no significance to being on the left or on the right.
This allows us to reorder set parameters in a series of
all unions or all intersections. We cannot reorder across
different operations though; A ∪B ∩ C ̸= C ∪B ∩ A.

Distributive: a function
that, applied to a paren-
theses group can be
distributed into and ap-
plied individually to each
element within that group.

The distributive law holds when an operation can be
distributed into parentheses. This law is mostly used in
the backwards direction to reduce an expression. Dif-
ferent operators are being used within and outside the
parentheses, so they can’t simply be shifted around as
in the associative or commutative laws. Instead, the
correct operation must still be applied, but it can be ap-
plied to each element within the parentheses and then
the final results combined, or vice versa.

Identity: a function that,
given any parameter, re-
turns that value as the re-
sult.

The identity law describes situations in which a set ex-
pression is applied to an operation that “does nothing”,
in some sense. There are two main types of identity
functions shown here: the type that preserve a set ex-
pression, and the type that consume one. The preserva-
tion laws show that we can union a set with the empty
set, or intersect a set with the universe, and retain the
same original set. The consumption laws show that
unioning a set with the universe, or intersecting it with
the empty set, will destroy the original set and leave
just the universe, or the empty set, respectively.

Double Negation: the oppo-
site of the opposite of any
expression is itself.

The double negation, or involution, law indicates that
if we take the complement of any set, and then the com-
plement of that, we get back where we started. No mat-
ter how many complement operators are present, they
can always be removed in pairs: A′′′′′ = (((A′′)′′)′ = A′,
for example.

For any algebraic law on
sets, that law has a dual
law which is found by re-
placing all ∪ with ∩, all ∩
with ∪, all U with ∅, and
all ∅ with U . For exam-
ple, given the law x ∪ U =
U , it must also be true that
x ∩∅ = ∅.
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The complement laws describe how the complement,
or opposite, of certain sets behave. For example, the
universe and empty set are complements of each other.
Likewise, any set and its complement can be combined
either with union to form the universe, or with inter-
section to form the empty set.

DeMorgan’s Law: a com-
plement can be distributed
into an expression if the
union and intersections are
flipped.

DeMorgan’s Law is an interesting rule that originates
in Boolean logic (we’ll see more of this later). It says
that if an element is found in neither A nor B, repre-
sented by (A∪B)′, then that element is not found in A,
and it is not found in B, represented by A′ ∩B′.

The absorption law can be described with subset rea-
soning: If A ⊆ B, then A ∪ B must simply be B, be-
cause all elements in A are already in B, so the union
contributes nothing new. How can we be sure, in a gen-
eral set expression, that A ⊆ B? If we took B ∩ A, then
that result must be a subset of B because it could only
contain elements that appear in B. So in the expres-
sion B ∪ (B ∩A), the latter part B ∩A must be a subset
of the first part B. Since we are combining them with
union, the latter part must contribute nothing new. So
that whole expression can be represented as just B.

4.3 Applying Algebra Laws

The various set algebra laws can be used to transform
any given set expression into many other equivalent set
expressions. In general, a common goal is to reduce the
number of operations to the smallest count possible.
Other less common goals might be to remove certain
operators completely; it turns out that all set expres-
sions can be represented with complement and either
union or intersection, but not both.

Assuming the goal is to simplify the expression as
much as possible, a good first step might be to create
a Venn diagram. The Venn diagram may make the fi-
nal reduction expression obvious, and it can also serve
as a check to ensure that equivalence is maintained
throughout the process. At all times, the Venn diagram
should be the same for each simplification step.

If you know you need to
get rid of certain symbols
from the expression, focus
on that part of the expres-
sion when looking for ap-
propriate laws.
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� Example 4.1 • Let’s consider first a simple example
of (B ∩B′) ∪A. If we visualize this as a Venn diagram,
we come up with:

Therefore, we know right away that this expression
must simplify to A. But how can we prove it using
the laws? Unfortunately, there is no automatic tech-
nique to select which law to use in simplification: it
is a process of trial and error. Different sequences of
applications may lead in longer or shorter paths, but
ultimately you should ensure that an unbroken chain
is followed until the simplest form is reached.

In this case, we know that we need to get rid of the
B symbols entirely. Consulting the laws, therefore, we
find a matching pattern in complement law 7b, which
tells us that B∩B′ = ∅. We can then substitute this part
into the original expression to get the new expression
∅ ∪ A. This expression is guaranteed to be equivalent,
and have the same Venn diagram, as the original ex-
pression. Try it and make sure.

Whenever the empty set or the universe appears in
an expression, we should look to the identity laws to
see if it can be removed. In this case, if we first flip
the subparts using commutative law 3a, our expression
matches identity law 5a. This eliminates the empty set
and leaves us with our final simplified expression A.

It’s easy to skip specifi-
cally applying associative
and commutative laws
and “automatically” rear-
range set expressions as
needed. However, there
is danger here as not all
rearrangements are valid.
A mistaken invalid rear-
rangement can cause the
entire simplification to
break down.

A simplification can be documented as a step-by-step
procedure, showing at each step the expression so far
and the law being applied to reach the next step. When
subexpressions are being transformed, it may be help-
ful to underline them to help show the reader exactly
what is happening.
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1. (B ∩B′) ∪ A Initial Set
2. (B ∩B′) ∪ A Complement Law 7b
3. ∅ ∪ A Commutative Law 3a
4. A ∪∅ Identity Law 5a
5. A Final Expression

�

Remember the goal of the
step-by-step procedure is
to serve as a proof that
the transformation is valid.
Therefore, include as much
detail as is necessary to
convince the reader that the
laws have been followed
correctly.

� Example 4.2 • Let’s now consider a more compli-
cated case. How about the expression (B∪C)∩(C∩A).
If we visualize this expression as a Venn diagram, we
find it is simply the intersection C ∩ A:

To begin solving this problem, we actually have to
make it a little worse first.

1. (B ∪ C) ∩ (C ∩ A) Initial Set
2. (C ∩ A) ∩ (B ∪ C) Commutative Law 3b
3. ((C ∩ A) ∩B) ∪ ((C ∩ A) ∩ C) Distributive Law 4b

(C ∩ A is the x in the rule)

Notice the application of the distributive law here
makes the expression more complex; however, this
complexity is necessary to open doors to simplification.
In particular, by expanding the expression first, we can
take advantage of the powerful absorption law to elim-
inate the unused portion.

4. ((C ∩ A) ∩B) ∪ ((C ∩ A) ∩ C) Current Set
5. ((C ∩ A) ∩B) ∪ ((C ∩ A) ∩ C) Commutative Law 3b
6. ((C ∩ A) ∩B) ∪ (C ∩ (C ∩ A)) Associative Law 2b
7. ((C ∩ A) ∩B) ∪ ((C ∩ C) ∩ A) Idempotent Law 1b
8. ((C ∩ A) ∩B) ∪ (C ∩ A) Commutative Law 3a
9. (C ∩ A) ∪ ((C ∩ A) ∩B) Absorption Law 9a
10. C ∩ A Final Expression

�

� Example 4.3 • What if you have the expression B ∪
B′ ∩ A? The immediately obvious law to apply is the
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complement law 7a on the first portion. This, however,
creates a problem. First, let’s visualize B ∪B′ ∩ A:

Apply the complement law 7a to the first portion of
the expression, yielding U ∩ A, which has the Venn di-
agram:

Be careful of order of op-
erations; when unions and
intersections are mixed, re-
member that intersection
occurs first. Write in paren-
theses to enforce correct or-
dering.

x ∪ y ∩ z = x ∪ (y ∩ z).
However, x ∪ y ∩ z ̸= (x ∪
y) ∩ z.

The set laws are guaranteed to never change the mean-
ing of a set expression; that is, whenever a set law is
applied the new expression will be equivalent to the
old expression. In this case, however, these two ex-
pressions are clearly not equivalent. The problem here
is failure to obey order of operations. Union and inter-
section do not have the same precedence, which means
you must imagine parentheses grouping around the
higher precedence operation: B ∪ (B′ ∩ A). In order to
perform the complement as specified, the parentheses
would have to be moved to (B ∪B′)∩A, however, this
move is not supported by any associative law. There-
fore, the simplification is invalid. �

� Example 4.4 • To consider another example where
order of operations could trip up a transformation,
consider the expression A ∩ (B ∩ C)′. This expression
can be diagrammed as:



34 CHAPTER 4 | Simplifying Set Expressions

If we apply DeMorgan’s Law to the latter half of the
expression, it seems to directly map A ∩B′ ∪ C ′. How-
ever, this is not correct. Using order of operations, we
would evaluate that expression as (A ∩ B′) ∪ C ′ which
gives the diagram:

Even though parentheses were not specified in the rule,
each rule applies atomically, and the result must follow
the same order of operations as the original subexpres-
sion. To ensure a subexpression is atomic, we must be
able to put parentheses around it without changing the
meaning of the whole expression. Likewise, the rule re-
sult should have parentheses until we determine they
are not needed. Thus, the correct application of De-
Morgan’s Law is A ∩ (B ∩ C)′ = A ∩ (B′ ∪ C ′). �
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4.4 Exercises

Solutions to these exercises can be found in Appendix A.4 on page 256.

1. Problem: Simplify the set expression
(A′ ∪B′)′.

2. Problem: An incorrect attempt at sim-
plifying B ∪ B′ ∩ A was shown earlier
in the chapter. Show a correct simplifi-
cation for this expression.

3. Problem: Simplify the set expression
A ∩B ∩ A′ ∪ A ∪B′ ∪ A′.

4. Problem: In the previous chapter, a cer-
tain Venn diagram was found to have
the set expression (A ∩ B ∩ C ′) ∪ (A ∩
C ∩B′)∪ (B ∩C ∩A′)∪ (C ∩ (A∩B)′).
Simplify this expression.

5. Problem: Prove that (A∩B′)∪(A∩B) =
A ∪ (B ∩B′).

6. Problem: Prove the absorption law (9a)
x ∪ (x ∩ y) = x.

7. Problem: Prove the absorption law (9b)
x ∩ (x ∪ y) = x.

8. Problem: Megan is writing a video
game which needs to process space
ships with various weapons. Let the
universe be all space ships in play, the
set L be all space ships with lasers, the
set M be all space ships with missiles,
and the set D be all space ships with
death rays. Any space ships may be
configured with any or all weapons (or
no weapons).

Megan needs to write a program to
find all space ships which meet one or
more of the following criteria:

(a) The ship has both missiles and
lasers.

(b) The ship has death rays or lasers,
but not both.

(c) The ship has missiles.

(d) The ship has lasers, missiles, and
death rays.

Devise a single simplified set expres-
sion to find the ships Megan is looking
for.
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Chapter 5
Logical Operators and
Truth Tables

Sets are important for considering collections of objects
to be processed. Computers, however, usually pro-
cess elements one at a time. Internally, consideration
of any object breaks down into a series of yes/no (or
true/false) questions. These questions form the funda-
mental groundwork of computation. Boolean expres-
sions (named after George Boole, who discovered these
techniques), are closely related to set expressions, but
consider only singular true/false values rather than
sets of objects.

Boolean: a 2-valued ob-
ject, whose values are usu-
ally represented as yes/no,
true/false, or 1/0.

5.1 Truth Tables

Truth Table: a table indi-
cating the true/false result
of a Boolean expression for
all possible permutations
of input values.

Set operations may be described, perhaps in some
vagueness, by Venn diagrams. Boolean operations,
dealing with only the values true and false (often ab-
breviated as T and F), can be described exactly by us-
ing truth tables. All Boolean operations are formally
defined either by truth tables or by reference to other
Boolean operations. Truth tables are composed of a se-
ries of columns, one for each input variable, and one
final output column. Each possible permutation of in-
put values constitutes a row.

If a Boolean expression has
n variables, then its truth
table will be n + 1 columns
and 2n rows.

Two Boolean expressions can be checked for equiva-

37
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lence by creating a truth table for each expression. Two
equivalent Boolean expressions will always have the
same truth table.

5.2 Logical Operators

Boolean expressions are built on three fundamental op-
erators: AND, OR, and NOT.

Simple and complex truth
tables for any Boolean ex-
pression can be created
with a variety of online
tools, including a nice Java
implementation found at
http://www.
brian-borowski.com
/Software/Truth/

An easy online truth ta-
ble generator, although
not as pretty as the
above, can be found at
http://turner.
faculty.swau.edu
/mathematics/
materialslibrary/
truth/

The operator AND is represented with the caret ∧, or
the dot · or ∗, or & between two Boolean values or
subexpressions. The AND operator returns true when
both of the inputs are true, and false in any other case.
Here is the truth table for a ∧ b:

a b a ∧ b

T T T
T F F
F T F
F F F

To be correct, a truth ta-
ble must list the result of
all possible permutations
of input values; and it must
not contain a contradictory
claim. The best way to
ensure these conditions are
met is to verify that a truth
table has the correct num-
ber of rows (2n for n input
values) and that each row’s
input values are distinct.

If we had a pair of Boolean values representing a and b,
we could reference the truth table to find out what the
result of a ∧ b is. Arbitrarily large Boolean expressions
can be solved step by step in this way.

The operator OR is represented with the inverted caret
∨, or +, or |, between two Boolean values or subex-
pressions. The OR operator returns true when either or
both of the inputs are true. It returns false only when
both of the inputs are false. Here is the truth table for
a ∨ b:

a b a ∨ b

T T T
T F T
F T T
F F F

The ordering of the rows
and columns are not sig-
nificant, and different tools
and authors may order the
rows and/or columns in
different ways. You must
check the values specified
in each row, and match the
variable specified for each
column, to ensure you have
the right entry. The operator NOT is represented with the symbol ¬, or

with the tilde ∼, or !, in front of a Boolean value. The

http://www.brian-borowski.com/Software/Truth/
http://www.brian-borowski.com/Software/Truth/
http://www.brian-borowski.com/Software/Truth/
http://turner.faculty.swau.edu/mathematics/materialslibrary/truth/
http://turner.faculty.swau.edu/mathematics/materialslibrary/truth/
http://turner.faculty.swau.edu/mathematics/materialslibrary/truth/
http://turner.faculty.swau.edu/mathematics/materialslibrary/truth/
http://turner.faculty.swau.edu/mathematics/materialslibrary/truth/
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NOT operator returns true when the input is false, and
it returns false when the input is true. In other words,
the NOT operator inverts the input. Here is the truth
table for ¬a:

a ¬a
T F
F T

The NOT operator takes
only one input value, so its
truth table consists only of
two rows. The AND and
OR operators both took
two input values, requiring
larger truth tables to fully
describe.

Binary Operator: an opera-
tor that takes two inputs.

Unary Operator: an opera-
tor that takes only one in-
put.

Operations such as AND, OR, and NOT are often de-
scribed as being either binary or unary; binary opera-
tions (AND and OR) take two inputs, while unary op-
erations (NOT) take only one input.

5.3 Logical Expressions

A fairly ordinary order of operations applies with
Boolean expressions. NOT has the highest precedence,
followed by AND, with OR having the lowest prece-
dence of the three. Therefore, the expression ¬a ∧ b is
the same as (¬a)∧ b, but not the same as ¬(a∧ b). Like-
wise, a∨ b∧ c is the same as a∨ (b∧ c), but not the same
as (a ∨ b) ∧ c.

To create the truth table for any logical expression, first
count the number of input variables in the expression.
Create a table with the appropriate number of rows
and columns for those input variables. Fill in the input
part of the rows. Then, for each row, solve the expres-
sion from the inside out using order of operations. Fill
in the final result in the output column, and proceed to
the next row.

� Example 5.1 • For example, let’s construct the truth
table for ¬a∧ b. We first note that there are two distinct
Boolean variables a and b in the expression. So we will
create a table with 3 columns (a, b, and the output) and
22 = 4 rows.
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a b ¬a ∧ b

T T
T F
F T
F F

Each row will tell us what the specific input values
are for those variables. Then, we’ll plug them into the
expression and solve, keeping order of operations in
mind. First, both a and b will be true. The innermost
operation is ¬a, which will be false (refer to the truth
table for ¬ if in doubt). Now we have ¬a is false and b
is true. These two are combined with an AND, which
will return false, which is the final result for this row.

If the solution to a given expression with certain val-
ues is difficult to manage mentally, a chart can be used.
First, write out the expression and place the known
variable values underneath each instance of a variable.
Consider the case for the second row, where a is true
and b is false. Build the result of the expression from
the inside out, crossing out values as they are con-
sumed.

With practice, these tech-
niques can be done on a
single line.

¬ a ∧ b
T F

F T F

F T F F

Thus, the outcome given the inputs a = T and b = F is
false. This process continues to determine the result of
each row. The final truth table is:

a b ¬a ∧ b

T T F
T F F
F T T
F F F

�

Short-Circuit Evaluation:
portions of a Boolean ex-
pression may be skipped
(unevaluated) if it is
known that their value will
not affect the final result.

In some expressions a technique known as short-
circuiting may be helpful. For example, consider the
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expression a ∧ (b ∨ ¬(c ∧ d) ∨ (b ∧ d)). In this expres-
sion, if we knew that a was false, we could skip the en-
tire right-hand side and go straight to the result: false.
Short-circuiting is specifically possible with two oper-
ators: AND, if one side is false the entire expression is
false; and OR, if one side is true the entire expression is
true.

5.4 More Logical Operators

Based on the three fundamental operators, several
more common operators are defined. These operators
may be defined either with a truth table, or as an ex-
pression built of the fundamental operators.

The OR operator, as previously defined, allows either
or both of the inputs to be true. A modified version, the
Exclusive-OR, or XOR, operator returns true if exactly
one of its inputs are true. This can be read as one or the
other, but not both. The XOR operator is represented
with the circled plus symbol ⊕, and can be defined as
a⊕b = (a∨b)∧¬(a∧b). Here is the truth table for a⊕b:

a b a⊕ b

T T F
T F T
F T T
F F F

The implication operator is true if, given a condition,
the result is also guaranteed. This operator takes some
consideration to fully understand. We’ll first give the
definition and truth table, and then consider carefully
every row to understand why the result makes sense.
The implication, given with the symbol →, can be de-
fined as a → b = ¬a ∨ b. Here is the truth table for
a → b:

Implication: an expression
“a implies b” is true if,
whenever a is true, b is
guaranteed to be true. If a
is false, b is irrelevant and
the implication is automat-
ically true.
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a b a → b

T T T
T F F
F T T
F F T

Implication is the only
Boolean operator shown
here which is not symmet-
ric; that is, if a → b is true,
this does not mean that
b → a is also true.

This truth table seems at odds with the most intuitive
definition of implication. We’ll look at each row one at
a time. In the first row, if both a and b are true, it seems
reasonable that the claim “a implies b” is upheld, so
the result is true. In the second row, a is true but b is
false. This contradicts the claim that “a implies b”, as
we have a true value for a but a false value for b. So
the implication itself is false in this case. The third and
fourth cases can be taken together: in both cases, a is
false. This means the statement “a implies b” is vac-
uously true: because we don’t have a, we can’t make
any claim on the value of b.

For example, if we said “Rain implies wet pavement”,
but there was no rain, then the presence or absence
of wet pavement would not invalidate the statement.
However, if there was rain, then the pavement would
have to be wet, otherwise the claim “rain implies wet
pavement” becomes itself false.

A final operator to consider is the logical biconditional,
perhaps easiest understood as equality. The logical bi-
conditional operator, written with the double sided ar-
row ↔, or sometimes the equivalence symbol ≡, is true
if both of its inputs are equal (regardless of whether
those inputs are true or false). This operator can be de-
fined with a ↔ b = ¬(a ⊕ b). The reason for the name
biconditional, and the choice of double arrow comes
from the alternative definition a ↔ b = (a → b) ∧ (b →
a).

a b a ↔ b

T T T
T F F
F T F
F F T
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5.5 Relationship to Set Expressions

Boolean expressions and set expressions share a close
relationship. A set expression which describes a set
through the use of unions and intersections can be
translated directly into a Boolean expression which de-
scribes the same relationship for a single element that
may be a member of the set(s).

Set Notation Meaning Boolean Notation Meaning
A,B,C, ... An unordered col-

lection of elements
a, b, c, ... True/false value in-

dicating if some ob-
ject is a member of
the respective set. If
a is true, then the ob-
ject is a member of
A.

A ∪B All the elements in
A together with all
the elements in B

a ∨ b True if the object is
in either the set A
or B, or both. In
other words, true if
the object is in A∪B.

A ∩B All the elements that
are in both A and B.

a ∧ b True if the object is
in both sets A and
B. In other words,
true if the object is in
A ∩B.

A′ All the elements
in the universe not
found in A

¬a True if the object is
not in the set A.

A△B All the elements in
either A or B, but
not both.

a⊕ b True if the object is
in the set A, or the
set B, but not both.
In other words, true
if the object is in
A△B.

In general, set expressions may be translated directly
into Boolean expressions by replacing ∪ with ∨ and ∩
with ∧. Complement ′ must be replaced with ¬, but
in set notation the complement follows the subexpres-
sion, whereas in Boolean notation the complement pre-
cedes the subexpression. Any ∅ in the set expression
becomes the constant False, and any U in the set ex-
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pression becomes the constant True. The set expression
A′ would be translated as ¬a; the set expression (A∪B)′

would be translated as ¬(a ∨ b).

Venn diagrams and truth tables are also directly corre-
lated; the input values in the truth table describe each
distinct region in a Venn diagram. If the result is true,
then that region of the diagram is filled in. Consider
the following Venn diagram and equivalent truth ta-
ble. Notice that just C, C ∩ A ∩ B′, C ∩ B ∩ A′, and
A ∩ B ∩ C ′ are filled in on the Venn diagram, but other
regions such as A ∩B ∩ C are not. Compare this to the
truth table, which shows true for the filled in regions.

This truth table has eight
rows because it has three
variables, and 23 = 8.
It would not be possi-
ble to consider all re-
gions/possibilities in less
than eight rows.

a b c result
T T T F
T T F T
T F T T
T F F F
F T T T
F T F F
F F T T
F F F F

5.6 Reverse-Engineering a Truth
Table

A mechanical procedure exists for taking a truth table
of an unknown expression and determining an equiva-
lent Boolean expression. This expression is likely not in
simplest form, and should be simplified as we’ll show
later.

The procedure to create a Boolean expression from a
truth table is:

1. Cross out all rows where the outcome is false.

2. For each remaining row: create a subexpression
AND’ing each variable together, and place a NOT
in front of those variables that are false in that
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row. For example, if a is true, b is false, and c
is true, the subexpression is (a ∧ ¬b ∧ c).

3. Connect all the subexpressions together with
ORs.

This procedure creates an expression in disjunctive
normal form.

Disjunctive Normal Form: a
series of subexpressions all
connected by OR opera-
tors. Each subexpression
must consist of a series
of distinct variables, each
one possibly prefaced with
a NOT, that are connected
with ANDs. Also called
Sum of Products..� Example 5.2 • For example, consider the following

truth table:

a b c result
T T T T
T T F F
T F T F
T F F T
F T T T
F T F F
F F T F
F F F F

What Boolean expression could match this truth table?
First, cross out all rows where the outcome is false.

a b c result
T T T T
T T F F
T F T F
T F F T
F T T T
F T F F
F F T F
F F F F

For simplicity, we’ll rewrite the partial truth table con-
sisting only of rows with true outcomes.

a b c result
T T T T
T F F T
F T T T



46 CHAPTER 5 | Logical Operators and Truth Tables

For each row, create a conjunction (variables connected
with ANDs).

a b c Conjunction
T T T a ∧ b ∧ c
T F F a ∧ ¬b ∧ ¬c
F T T ¬a ∧ b ∧ c

Finally, connect all the conjunctions together with ORs.
The final Boolean expression is (a ∧ b ∧ c) ∨ (a ∧ ¬b ∧
¬c) ∨ (¬a ∧ b ∧ c). �

Some software programs which operate on Boolean ex-
pressions require disjunctive normal form (or its twin,
conjunctive normal form). Any Boolean expression can
be converted into disjunctive normal form by first cre-
ating its truth table, and then converting the truth table
to disjunctive normal form as shown above.

Be sure to wrap each subex-
pression in parentheses to
get the desired order of op-
erations.

5.7 Operator Summary

For completeness, here is a summary of the truth tables
for all binary (two-input) operators described.

a b a ∧ b a ∨ b a⊕ b a → b a ↔ b

T T T T F T T
T F F T T F F
F T F T T T F
F F F F F T T



SECTION 5.8 | Exercises 47

5.8 Exercises

Solutions to these exercises can be found in Appendix A.5 on page 261.

1. Problem: Let r be true if the roses are
red, let d be true if the daffodils are in
bloom, and let c be true if the cucum-
bers are ripe. Write Boolean expres-
sions for the following claims:

(a) The roses are red and the daffodils
are in bloom.

(b) Either the cucumbers are ripe, or
the daffodils are in bloom, but not
both.

(c) Either the roses are red, or the daf-
fodils are in bloom, or both.

(d) The roses are not red, nor are the
daffodils in bloom, but at least the
cucumbers are ripe.

(e) If the cucumbers are ripe, then
either the roses must be red or
the daffodils must be in bloom, or
both.

2. Problem: Create a truth table for the
Boolean expression (a ∧ b) ∨ ¬(a ∨ c).

3. Problem: Create a truth table for the
Boolean expression a∧ (T ∨ b)∧ (c∧F ).

4. Problem: Is ¬a ∧ ¬b equivalent to ¬(a ∨
b)?

5. Problem: Prove that a ↔ b = (a →
b) ∧ (b → a).

6. Problem: Consider the following two
truth tables. Are these tables equiva-
lent?

a b result
T T T
T F F
F T T
F F T

b a result
F T F
F F T
T F T
T T T

7. Problem: Convert the set expression
A′ ∪ B′ ∩ (A ∪ B)′ into a Boolean ex-
pression.

8. Problem: Find a Boolean expression
matching the following truth table:

a b c result
T T T F
T T F T
T F T T
T F F F
F T T F
F T F T
F F T F
F F F T



Chapter 6
Manipulating Logical
Expressions

A significant portion of computer program implemen-
tation is based on deciding under what conditions cer-
tain actions should be taken. These conditions are writ-
ten with Boolean expressions. It is helpful to simplify
these expressions as much as possible; primarily to
help other programmers (and ourselves) understand
what the program is doing, but also in certain cases for
performance reasons.

Simplification of Boolean expressions follows the same
rules as set expressions. However, there are some dis-
tinctly Boolean concerns.

6.1 Satisfiability

A classic problem in programming is to determine,
given a Boolean expression, if there is some permuta-
tion of values for the various variables that results in
a true outcome. There are three possible outcomes: an
expression could be a contradiction, it could be satisfi-
able, or it could be a tautology.

Contradiction: a Boolean ex-
pression that is never true
regardless of input values.

A common contradiction is indicated with the expres-
sion a ∧ ¬a. At one time, a particular Boolean variable
may only have one value: true or false. In order for this

48
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expression itself to be true, a would have to be both
true and false at the same time. You can prove that an
expression is a contradiction by constructing a truth ta-
ble. If all of the outcome rows are false, the expression
is a contradiction.

a a ∧ ¬a
T F
F F

Satisfiable: a Boolean ex-
pression that is true for at
least one permutation of in-
put values.

Tautology: a satisfiable
Boolean expression that is
always true.

A tautology is the opposite of a contradiction: if all of
the outcome rows are true, the expression is a tautol-
ogy. A common tautology is indicated with the expres-
sion a ∨ ¬a.

a a ∨ ¬a
T T
F T

Tautologies and contradictions are worthless in a com-
puter program: they take up space and processing
time, but will always come out either true or false (re-
spectively), and so they add no benefit. In some cases,
changes over time to a Boolean expression will cause
it to become a tautology or contradiction. This case
should be noticed and the expression can be removed.

In a computer program, a
block that says “if (some
tautology) do (some be-
havior)” can simply be re-
placed by “do (some be-
havior)” since the condi-
tion will always be true.

In a computer program, a
block that says “if (some
contradiction) do (some be-
havior)” can be removed
entirely, since the condition
will never be true. This
case should be approached
with care; sometimes the
condition is mistaken and
should be fixed to be satis-
fiable.

These three attributes of Boolean expressions can also
be described using sets. Let the universe U be all pos-
sible Boolean expressions. Let S = {x : x is a satisfiable
Boolean expression}, T = {x : x is a tautology}, C =
{x : x is a contradiction}. In that case, U = S∪C (that is,
all expressions are either satisfiable or contradiction),
S∩C = ∅ (that is, satisfiable and contradictory expres-
sions are disjoint), T ⊂ S (that is, all tautologies are
satisfiable, but not all satisfiable expressions are tau-
tologies).

6.2 Boolean Algebra Laws

These laws mirror the set transformation laws, and the
explanations are largely the same. The table is repro-
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duced here, altered to show Boolean notation instead
of set notation, for convenience. The only significant
changes are the addition of laws regarding implication
and exclusive or.

Idempotent Laws
1a. x ∨ x = x 1b. x ∧ x = x

Associative Laws
2a. (x ∨ y) ∨ z = x ∨ (y ∨ z) 2b. (x ∧ y) ∧ z = x ∧ (y ∧ z)
2c. (x⊕ y)⊕ z = x⊕ (y ⊕ z) 2d. (x ↔ y) ↔ z = x ↔ (y ↔ z)

Commutative Laws
3a. x ∨ y = y ∨ x 3b. x ∧ y = y ∧ x
3c. x ↔ y = y ↔ x 3d. x⊕ y = y ⊕ x

Distributive Laws
4a. x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) 4b. x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

Identity Laws
5a. x ∨ F = x 5b. x ∧ T = x
5c. x ∨ T = T 5d. x ∧ F = F
5e. x ↔ F = ¬x 5f . x ↔ T = x
5g. x⊕ F = x 5h. x⊕ T = ¬x

Double Negation Law
6. ¬¬x = x

Complement Laws
7a. x ∨ ¬x = T 7b. x ∧ ¬x = F
7c. ¬T = F 7d. ¬F = T
7e. x⊕ ¬x = T 7f . x⊕ x = F
7g. x ↔ x = T 7h. x ↔ ¬x = F

DeMorgan’s Laws
8a. ¬(x ∨ y) = ¬x ∧ ¬y 8b. ¬(x ∧ y) = ¬x ∨ ¬y

Absorption Laws
9a. x ∨ (x ∧ y) = x 9b. x ∧ (x ∨ y) = x

Implication Laws
10a. x → (y → z) = (x ∧ y) → z 10b. x → y = ¬y → ¬x

Caution! Unlike most operators, implication is NOT
commutative. That is, x → y is NOT the same as y → x.
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6.3 Use of the Equivalence Opera-
tor

It is common for programmers to assign more (concep-
tual) weight to the equivalence operator (represented
in most languages as ==) than other operators, and as
a result, not take full advantage of its capabilities. Like
the other binary Boolean operators, it takes two param-
eters and returns a true or false value.

Note that in these examples, the variables given are
all Boolean variables, holding only the possible values
True or False, unless otherwise specified.

� Example 6.1 • Consider the expression a = b ∧ (c ↔
d). This means that for a to be true, b must be true and
c must equal d. A common (but not ideal) implemen-
tation technique for an expression of this type would
be:

In many programming lan-
guages, ¬ is represented by
!, ∧ is represented by &&
and ∨ is represented by ||.

a = false
if (c == d) then

if (b == true) then
a = true

end if
end if

Such an implementation is much longer than it needs
to be. There is no necessary reason to split this expres-
sion into two separate conditions; and the specific com-
parison of b to true if extraneous (see rule 5f above).
This code could be simplified substantially by follow-
ing the Boolean expression faithfully:

a = b && (c == d)

�

Like any other operator, multiple uses of the equiva-
lence operator in a single expression are acceptable.

In many programming lan-
guages, x !=y is short-
hand for !(x == y).

� Example 6.2 • Consider the following implementa-
tion (unrelated to the previous example):
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a = true
if (c == d) then

a = false
end if
if (b != c) then

a = false
end if

The outcome of operations such as these may be in-
ferred reasonably, or represented with a truth table. In
this case b, c, and d are used to determine the outcome
(they are input), and a is the output. It is possible that
there may be several outputs, or that a single variable
may serve in two roles, as both input and output.

Here is a truth table framework for this implementa-
tion:

b c d a

T T T
T T F
T F T
T F F
F T T
F T F
F F T
F F F

If nothing happens, a remains true. If either c ↔ d or
¬(b ↔ c) is true, or both, a is set to false. We can fill
in the rows where c and d are the same, as well as the
rows where b and c are different, with the outcome of
false. The other rows will be true.

First, here are the rows where c and d are the same:
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b c d a

T T T F
T T F
T F T
T F F F
F T T F
F T F
F F T
F F F F

Next, mark as false the rows where b and c are different.

b c d a

T T T F
T T F
T F T F
T F F F
F T T F
F T F F
F F T
F F F F

All remaining rows are marked as true:

b c d a

T T T F
T T F T
T F T F
T F F F
F T T F
F T F F
F F T T
F F F F

We can represent this entire operator as a = ¬((c ↔
d) ∨ ¬(b ↔ c)). This block of code can be reduced into
a single Boolean expression:

a = !( (c == d) || (b != c))
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�

The same is true for other operators which return
true/false values (most notably, the comparison oper-
ators < and >).

� Example 6.3 • It is common to see an implementa-
tion such as:

if (a < b) then
c = true

else
c = false

end if

This should be simplified to:

c = a < b

�

6.4 Applying Algebra Laws

The application of the algebra laws largely follows the
set simplification techniques. However, the limitation
of Boolean values to only true and false provides some
additional reasoning opportunities.

Consider the expression a ↔ ¬a. Intuitively, a could
never equal ¬a, so this expression must be a contra-
diction, as shown in the Complement Laws. Can we
prove it? Being a Boolean value, a must be either true
or false. Consider both cases. If a is true, then the ex-
pression is T ↔ ¬T . Applying the NOT operator gives
us T ↔ F . By rule 5e, this simplifies to ¬T , which is
false. On the other hand, if a is false, then the expres-
sion is F ↔ ¬F . Applying the NOT operator gives us
F ↔ T . By rule 5f, this simplifies directly to F . So re-
gardless of the value of a, the result is always false; the
statement is a contradiction.

Law of Excluded Middle: for
any Boolean expression or
value x, exactly one of x
and ¬x must be true, and
one must be false.
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� Example 6.4 • More traditional simplifications are
also possible. Consider the expression (a ↔ T ) ∨ (a ↔
F ). By the law of excluded middle, it seems clear this
statement must be a tautology. A step by step simplifi-
cation can aid in proving this claim.

1. (a ↔ T ) ∨ (a ↔ F ) Initial Expression
2. (a ↔ T ) ∨ (a ↔ F ) Identity Law 5f
3. a ∨ (a ↔ F ) Identity Law 5e
4. a ∨ ¬a Complement Law 7a
5. T Final Expression

�

Simplification is useful for reducing the often overly
complex disjunctive normal form expressions gener-
ated mechanically from truth tables.

� Example 6.5 • Consider an expression from the last
chapter: (a ∧ b ∧ c) ∨ (a ∧ ¬b ∧ ¬c) ∨ (¬a ∧ b ∧ c).

Add parentheses around
sub-blocks when applying
algebra rules to ensure or-
der of operations stays cor-
rect.

1. (a ∧ b ∧ c) ∨ (a ∧ ¬b ∧ ¬c) ∨ (¬a ∧ b ∧ c) Initial Expression
2. (a ∧ b ∧ c) ∨ (a ∧ ¬b ∧ ¬c) ∨ (¬a ∧ b ∧ c) Commutative Law 2a
3. (¬a ∧ b ∧ c) ∨ (a ∧ b ∧ c) ∨ (a ∧ ¬b ∧ ¬c) Distributive Law 4b
4. ((b ∧ c) ∧ (¬a ∨ a)) ∨ (a ∧ ¬b ∧ ¬c) Complement Law 7a
5. ((b ∧ c) ∧ T ) ∨ (a ∧ ¬b ∧ ¬c) Identity Law 5b
6. (b ∧ c) ∨ (a ∧ ¬b ∧ ¬c) Final Expression

�

6.5 Use of the Assignment Opera-
tor

Many programming languages allow the programmer
to alter the value of a variable with an assignment oper-
ator, often =. These values may even be altered based
on their current value, which can in various circum-
stances lead to confusion. A truth table can always
be created for any Boolean operation, including those
with mutable values, by having a column for the input
value of a variable in the left group, and a column for
the output value of a variable in the right group.

Many programmers con-
sider altering a variable’s
value after it has been as-
signed, except in certain
clear cases, to be a bad
practice.
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� Example 6.6 • Consider the following implementa-
tion:

a = c || d
b = a && d

In this case, the input variables are c and d; their val-
ues are assumed to have been set prior to entering this
block. The output variables are a and b. It is true that
a is also used as input to the expression for b, however,
it is not considered an input variable because its value
prior to the block is irrelevant.

Here is a framework for the truth table:

c d a b

T T
T F
F T
F F

We can fill in the truth table by devising logical expres-
sions for each output variable, and evaluating them in
the usual way. It may help to simplify any expression,
if possible, before evaluating it. A simplified expres-
sion may also suggest a change in implementation. The
logical expression for a is simply a = c∨ d. What about
b? We don’t want to reference a, because our truth table
doesn’t define a as an input variable. We can substi-
tute in the definition of a, however, and come up with
b = (c∨d)∧d. That can be simplified by the absorption
law 9b to just b = d.

What if b was modified
later in the program, and
you replaced all instances
of b with d? This could
cause incorrect modifica-
tion of d instead. This is
one of the reasons altering
a variable’s value after ini-
tialization can cause trou-
ble.

We can now fill in the truth table for each row, evaluat-
ing each output variable independently.

c d a b

T T T T
T F T F
F T T T
F F F F
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This, combined with the simplification of b, suggests
that b may be replaced with b = d in the implementa-
tion, or possibly removed entirely, with reference to d
in its place. �

� Example 6.7 • An example of an implementation
which uses the same variable in both input and output
roles would be a Boolean flag, such as

Boolean Flag: a Boolean
variable which starts out
at one value (usually false)
and switches value in one
direction only (usually to
true) under a variety of
conditions.

a = a || b

The equivalent expression is a = a ∨ b. In this case,
the truth table requires two seperate versions of a: one
for the input and one for the output. In the framework
truth table, a is listed twice: once on the left as input,
and once on the right as output. Some truth tables will
annotate each instance to clarify which use is intended.

a b a

T T
T F
F T
F F

The result side of the truth table is found by filling in
the evaluation of a ∨ b for each row. That fact that the
value of a will change at the end is irrelevant.

a b a

T T T
T F T
F T T
F F F

�

6.6 Relationship to Natural Lan-
guage

Natural language is frequently ambiguous, and so
presents some issues in translating into Boolean ex-
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pressions. In particular, words like “and” and “or”
may have different meanings than the strict AND and
OR of Boolean logic. In most cases, there is no hard
and fast rule; reasoning must be employed to deter-
mine what the writer intended. If the writer is avail-
able to ask for clarification, all the better.

� Example 6.8 • Consider the following sign, seen at a
garden store outside a showroom of antiques and frag-
iles: “This is a difficult room for kids and carts.” To
construct a logic expression, we first find the variables:
let d indicate if the room will be difficult, k indicates
if we have kids with us, and c indicates if we have a
cart with us. The naive approach would translate this
expression into d = k ∧ c, but this is probably not cor-
rect. Such an expression claims that the room is diffi-
cult only if you have BOTH a kid AND a cart. It’s more
likely that this “and” is actually an inclusive or, that is,
the sentence is shorthand for “This is a difficult room
for kids, as well as being a difficult room for carts.” The
expression in this case would be d = k ∨ c; if you have
either or both, it will be a difficult room. �

� Example 6.9 • A sandwich shop offers the ques-
tion: “Do you want swiss or provolone cheese?”. An
answer of “yes” here is probably not acceptable; we
can assume this is an exclusive or; you can choose one
or the other but not both. Actually, though, this isn’t
quite correct because there is a third, valid choice: “no
cheese”. Let v indicate if a cheese selection is valid, s
means swiss is selected, and p means provolone is se-
lected.

s p v

T T F
T F T
F T T
F F T

How can we represent this truth table with an expres-
sion? Either v = ¬(s ∧ p), which could be read as
“Any selection except for both is fine”, or v = ¬s ∨ ¬p
(Just DeMorgan’s Law), which could be read as “Ei-
ther don’t choose swiss, or don’t choose provolone, or
both.” �
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Conditions provided in a bulleted list may be ANDs or
ORs, or in some cases, an assortment of these. Watch-
ing for contradictions and tautologies may help to de-
termine which case is true. In other words, if interpret-
ing the list as ANDs yield a contradiction, try interpret-
ing the list as ORs.

� Example 6.10 • Consider the following bulleted list,
which describes when a daytime running light will au-
tomatically be turned on:

• The engine is running.

• The parking brake is released.

• The light switch is in the “OFF” position.

• The light switch is in the “Auto” position, but the
headlights do not need to illuminate.

• The shifter is not in the park position.

At first, this list seems like a good list of AND condi-
tions; except for the contradiction that would require
the light switch to be in both the OFF and the Auto po-
sition. So these two cannot be connected with AND.
The other conditions, however, certainly could and
probably should be connected with AND: It wouldn’t
make sense for the running lights to come on when, say
the engine is off, the shifter is in park, but the parking
brake has been released, as would happen if the con-
ditions were all ORs. Besides the contradiction, how-
ever, there is no other indication of how these condi-
tions should be combined. Thus common sense needs
to be applied.

If we assume that each of these conditions is com-
bined with AND, except for the contradictory condi-
tions about the light switch, then we can create a logical
expression that indicates d, when the daytime running
light is enabled. Let e be true if the engine is running,
p be true if the parking brake is applied, l be true if
the light switch is in the auto position (we’ll assume
auto and off are the only two positions), h be true if
the headlights need to illuminate, and s be true if the
shifter is in park.
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In that case, d = e ∧ ¬p ∧ (¬l ∨ (l ∧ ¬h)) ∧ ¬s. �
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6.7 Exercises

Solutions to these exercises can be found in Appendix A.6 on page 270.

1. Problem: Prove that DeMorgan’s Law
can be extended to additional terms. In
other words, prove that ¬(a ∧ b ∧ c) =
¬a ∨ ¬b ∨ ¬c.

2. Problem: For each of the following
Boolean expressions, indicate if it is a
contradiction, a tautology, or just satis-
fiable.

(a) a ∨ (b ∧ ¬a)
(b) ¬(¬a ∨ ¬b) ∧ ¬(a ∧ b)

(c) a ∨ b ∨ c ∨ ¬(a ∧ b ∧ c)

3. Problem: Simplify the Boolean expres-
sion (a ∨ b) ∧ (a⊕ ¬b).

4. Problem: Rewrite (a ∧ b) → (b → c)
without implications, then simplify.

5. Problem: Prove the implication law 10b
(called contrapositive), that x → y =
¬y → ¬x.

6. Problem: Consider the implementation

b = b == false

(a) Convert to logical form,

(b) Simplify, and

(c) Describe in words

7. Problem: Assume response and
value are Boolean variables. For this
implementation:

(a) Create a truth table, and

(b) Simplify

response = false
if (value == true) then

response = true
else

response = false
end if

8. Problem: Assume self->active and
STATUS are Boolean variables. Note
that self->active is one variable,
the -> does not carry any significance
in terms of logical operators. For this
implementation:

(a) Create a truth table, and

(b) Simplify

if (self->active != STATUS) then
if ((self->active == false)
&& (STATUS == true)) then

STATUS = false
else if ((self->active == true)
&& (STATUS == false)) then

STATUS = true
end if

end if



Chapter 7
Decision Tables

A decision table is a form of truth table which re-
laxes the requirement that every input is a two-valued
Boolean, introduces the notion of impossible situations
(and therefore, the lack of need to indicate them on a
chart), and allows multiple output values which usu-
ally correspond to actions that a person or computer
might take.

Decision Table: a logical ta-
ble expressing and analyz-
ing conditions and actions
for a certain problem do-
main.

Decision tables are often used as a communication tool
between programmers and domain experts (the client).
A correct decision table allows both the client and pro-
grammer to be sure the correct logic will be imple-
mented in a program. Decision tables are often rep-
resented “rotated” compared to truth tables (although
this is not essential), with the rows being the input and
output labels, and the columns being the various pos-
sibilities.

7.1 Boolean Decision Tables

The most basic form of a decision table is where every
input and output follows the two value Boolean form.

� Example 7.1 • For example, let’s create a decision
table that represents the following rules:

• If the order is more than $35 and paid in cash,

62
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apply a 5% discount.

• If the order is not paid with cash, give a member-
ship application.

A condition is an input; an
action is an output.

In this case, two conditions warrant our attention:
whether or not the order was paid with cash, and
whether or not the order was more than $35. The possi-
ble actions are to apply a 5% discount, and give a mem-
bership application. Here is the decision table frame-
work for these conditions and actions:

Like a truth table, every
possible situation must be
considered. Thus, a stan-
dard Boolean valued deci-
sion table with n conditions
will have 2n columns.

Conditions and Actions Rules
1 2 3 4

More than $35 Y Y N N
Paid in cash Y N Y N
Apply 5% discount
Give Membership App

Each action value can be computed by considering
each column of conditions against the original descrip-
tion. We find that the discount applies only when the
order is more than $35 and it is paid in cash. The mem-
bership application is given whenever the order is not
paid with cash, regardless of the amount.

Generally yes is associated
with true, and no with
false.

Conditions and Actions Rules
1 2 3 4

More than $35 Y Y N N
Paid in cash Y N Y N
Apply 5% discount Y N N N
Give Membership App N Y N Y

�

It is possible to construct Boolean logic expressions
based on decision tables. These expressions allow the
rules to be implemented directly into a computer pro-
gram. One expression per action is expected. The ex-
pressions can be derived directly from the descriptive
statements, or mechanically from the decision table. A
mechanical transformation uses the disjunctive normal
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form technique of identifying the rules in which the ac-
tion is true, and building an expression based on the
conditions in which the action is taken.

� Example 7.2 • Consider the previous example. If
we let m be “more than $35”, c be “paid in cash”, d be
“apply discount”, and a be “give membership applica-
tion”, then we can look at the descriptions to form the
expressions d = m ∧ c and a = ¬c.

Alternatively, we can mechanically create the expres-
sions. In this case, d = (m∧c) and a = (m∧¬c)∨ (¬m∧
¬c). Normal Boolean simplification could be applied
to reach the more reduced forms shown previously. �

� Example 7.3 • What if the list of rules was modified
to add a third rule:

• If the order is more than $35 and paid in cash,
apply a 5% discount.

• If the order is not paid with cash, give a member-
ship application.

• Whenever a 5% discount is applied, give a mem-
bership application.

This last rule seems to add new conditions into the mix,
but really it does not. What we must do is substitute in
to the expression all possible cases that would result in
a discount being applied. Thus, we could modify this
rule to read: If the order is more than $35 and paid in
cash, give a membership application.

The number of business
rules has little impact on
the number of conditions
and actions; these must
be carefully inferred from
reading the descriptions
given. Watch out for any
contradictions in the rule
descriptions.

How does this affect our decision table? Are there new
conditions? No, we still only care about the method
of payment and the amount, specifically, the $35 cutoff
and the cash or not. How about actions? Is there a
new action? No, there are still only two actions. Even
though there are three rules given, there are only two
conditions and two actions.

The modified truth table has only one change as a re-
sult of this new rule.
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Conditions and Actions Rules
1 2 3 4

More than $35 Y Y N N
Paid in cash Y N Y N
Apply 5% discount Y N N N
Give Membership App Y Y N Y

The logical expression for a (giving membership app)
is updated to read a = (m ∧ c) ∨ ¬c. �

7.2 Indifferent Conditions

In many cases, a decision table with n Boolean condi-
tions need not have strictly 2n columns; some combi-
nations can be simplified by indicating that a certain
condition does not matter in certain cases. This makes
for a decision table which is smaller and easier to un-
derstand and read.

Indifferent Condition: a con-
dition whose value does
not matter for certain rules.

� Example 7.4 • Consider the following rules:

• Pay base salary to salaried employees.

• Pay hourly wage to hourly employees.

• Pay overtime to hourly employees who worked
more than 40 hours.

Here the conditions are whether an employee is hourly
or salaried, and whether or not they worked more than
40 hours per week. There are three possible actions:
paying the base salary, the hourly wage, and/or the
overtime.

Some people may choose
to represent hourly and
salaried as two differ-
ent Boolean conditions.
This may be useful if an
employee could work a
salaried position and also
have additional hourly
responsibilities (and pay).

Conditions and Actions Rules
1 2 3 4

Salaried? Y Y N N
More than 40 hours Y N Y N
Pay base salary Y Y N N
Pay hourly wage N N Y Y
Pay overtime N N Y N
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One thing you may notice in this table is the simi-
larity between rule columns 1 and 2. If a worker is
salaried, their pay is not affected by the number of
hours worked. Thus, “more than 40 hours” is an in-
different condition in the case of a salaried worker. We
can combine rule columns 1 and 2 by marking the con-
dition as indifferent.

It is important to make sure
that all possibilities are still
covered, and that no con-
tradictions exist, when us-
ing indifferent conditions.

Conditions and Actions Rules
1 2 3

Salaried? Y N N
More than 40 hours - Y N
Pay base salary Y N N
Pay hourly wage N Y Y
Pay overtime N Y N

�

7.3 Relationship to Boolean Expres-
sions

Boolean decision tables, possibly with indifferent con-
ditions, can be directly converted into Boolean expres-
sions. One expression will be created for each action
in the decision table: the expression will be true if the
action should be undertaken, false otherwise. Each of
the conditions will become a variable to be used in the
expressions.

� Example 7.5 • For example, consider the decision
table shown previously. There are three actions: pay
base salary, which we’ll call b, pay hourly wage, which
we’ll call h, and pay overtime, which we’ll call o. The
conditions are salaried, which we’ll call s, and more
than 40 hours, which we’ll call m.

Each action is converted into an expression using a
similar technique to that used for truth tables. Here
are the true cases for paying the base salary:
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Conditions and Actions Rules
1 2 3

Salaried? Y N N
More than 40 hours - Y N
Pay base salary Y N N
Pay hourly wage N Y Y
Pay overtime N Y N

An indifferent condition is simply omitted from the
generated expression. Thus our expression for paying
the base salary is b = s.

Conditions and Actions Rules
1 2 3

Salaried? Y N N
More than 40 hours - Y N
Pay base salary Y N N
Pay hourly wage N Y Y
Pay overtime N Y N

Two rules cause hourly wage to be paid. Within a
column, combine the conditions with ANDs; between
columns with ORs (disjunctive normal form). This
gives us h = (¬s ∧ m) ∨ (¬s ∧ ¬m). This expression
can be simplified, if desired, to h = ¬s.

Conditions and Actions Rules
1 2 3

Salaried? Y N N
More than 40 hours - Y N
Pay base salary Y N N
Pay hourly wage N Y Y
Pay overtime N Y N

Finally, paying overtime has the single rule of o = ¬s∧
m. �

7.4 Multi-valued Conditions

Decision tables also have the flexibility to replace rigid
Yes/No or True/False values with multi-valued condi-
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tions more appropriate to a given situation.

� Example 7.6 • Consider the following rules:

• Give a free gift to customers under 18.

• Give a discount card to customers 18 and up.

• Mail a coupon to customers over 45.

Here we have three actions: free gift, discount card,
and coupon. But what are the conditions? There is one
main variable being considered: age. However, it is
not a simple yes/no cutoff. There appears to be several
different cutoffs. One approach is to break these into
three different conditions: “under 18?”, “between 18
and 45?”, and “over 45?”. This approach is clunky and
awkward.

A better alternative is to allow conditions to have more
than two values. In this case, instead of yes and no, we
can have values < 18, 18− 45, > 45.

Conditions and Actions Rules
1 2 3

Age < 18 18− 45 > 45
Free gift Y N N
Discount card N Y Y
Mail coupon N N Y

The total number of
columns in a decision table
with no indifferent condi-
tions can be determined
using the multiplicative
counting rule, that is, the
product of the number of
options for each condition.

If we add in conditions relating to customer member-
ship, allowing a customer to be either a non-member,
a basic member, or a premier member, what happens
to the column count? Assuming no indifferent condi-
tions, there would be nine columns. Every permuta-
tion of possibilities must be considered. In this exam-
ple the actions would be filled in the usual way, based
on specified rules.
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For reasons of space, premier is abbreviated Pr in this
table.

Conds. and Actions Rules
1 2 3 4 5 6 7 8 9

Age < 18 < 18 < 18 18− 45 18− 45 18− 45 > 45 > 45 > 45
Membership Non Basic Pr Non Basic Pr Non Basic Pr
Actions ...

When translating multi-valued conditions into Boolean
expressions, the multi-valued conditions must first be
decomposed into a set of Yes/No conditions. �

7.5 Impossible Conditions

Certain combinations of conditions may be physically
or conceptually impossible.

� Example 7.7 • Consider the following rules:

• Offer a credit application to male customers.

• Offer a gift bag to pregnant customers.

• Offer a coupon to female customers.

Creating a decision table in the standard way produces:

Conditions and Actions Rules
1 2 3 4

Gender M M F F
Pregnant? Y N Y N
Credit app Y Y N N
Gift bag Y N Y N
Coupon N N Y Y

If needed for conversion
to Boolean expressions,
multi-valued conditions
can be decomposed into
a series of Boolean condi-
tions. There would be one
condition for each value,
and, using impossible con-
ditions, each rule would
have exactly one of those
values be true.

Something is wrong with this table. In general, it is not
possible for a customer to be both male and pregnant.
The client may intend to include men whose partners
are pregnant, men who are adopting, or other circum-
stances. However, if so, this should be clarified and the
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conditions updated to more accurately reflect testable
facts. If, however, only pregnant women are intended,
then the condition of pregnant men can be removed
from the table.

An indifferent condition
is similar to an impossi-
ble condition; however, an
indifferent condition indi-
cates that both cases are
possible, but there is no dif-
ference between them. An
impossible condition indi-
cates a particular case can-
not occur.

Conditions and Actions Rules
1 2 3

Gender M F F
Pregnant? N Y N
Credit app Y N N
Gift bag N Y N
Coupon N Y Y

Undefined Behavior: actions
may or may not occur
when the conditions are
not specified by a decision
table.

This decision table, although it appears incomplete,
is still acceptable because all possible conditions have
been considered. In this case, if somehow a pregnant
male were found, the system’s behavior is undefined.
Noting impossible conditions is important, as in the fu-
ture, situations may change that allow formerly impos-
sible conditions to become possible, and actions must
then be defined. �

Undefined behavior is very dangerous for program-
mers if conditions that turn out to be possible were
previously thought to be impossible, or missed. In that
case, it is unknown what, if any, actions will be exe-
cuted by the program. In particular, there is no guar-
antee that an error message will be generated, which
may lead to silent failures.
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7.6 Exercises

Solutions to these exercises can be found in Appendix A.7 on page 277.

1. Problem: Consider selecting an appropriate college to attend. The student posits the fol-
lowing requirements:

• College must be in the Northwest region, unless it is a top ten college.

• College must offer computer science, or math, or both.

• Computer science program, if offered, must have at least one renowned faculty mem-
ber.

Create a decision table to indicate if a college meets the requirements. Convert the decision
table into Boolean expressions.

2. Problem: Decompose the following multi-valued conditions into Boolean conditions. Con-
vert the resulting decision table into a Boolean expression.

Conds. and Actions
Rules

1 2 3 4 5 6 7 8 9
Age < 18 < 18 < 18 18− 45 18− 45 18− 45 > 45 > 45 > 45
Membership Non Basic Pr Non Basic Pr Non Basic Pr
Call from Trainer N N N N Y Y Y Y Y

3. Problem: Create a decision table for the following statement:

A mailing is to be sent out to customers. The content of the mailing is about the current
level of discounting and potential levels of discounting. The content is different for differ-
ent types of customers. Customer Types A, B, and C get a normal letter except Customer
Type C, who get a special letter. Any customer with 2 or more current lines or with a credit
rating of ‘X’ gets a special paragraph added with an offer to subscribe to another level of
discounting.

Convert the resulting decision table into a Boolean expressions.

4. Problem: Create a decision table for the following statement:

If the package weight is less than 5 pounds, base shipping is $4.00. If the package weight
is 5 pounds to 10 pounds, base shipping is $6.00. For packages more than 10 pounds,
base shipping is $10.00. If overnight shipping is selected, add $20.00 to the shipping cost.
If insurance is selected, double the base shipping price. Insurance is mandatory when
overnight shipping is used. Packages 5 pounds or more should have a “heavy” label ap-
plied. If insurance is selected or the package is more than 10 pounds, have a “special
freight” label applied.
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5. Problem: Consider the following decision table:

Conditions and Actions Rules
1 2 3

Enrolled in Class Y Y N
Passed Most Recent Exam Y - N
Advertise Next Class Y N Y
Send Checkup Email Y Y N

(a) Indicate all conditions which have contradictory actions.

(b) Indicate all conditions which are undefined.

(c) For all undefined conditions, is the condition probably impossible or simply unde-
fined?

Consider the following decision table (called the original table) below:

Conditions and Actions Rules
1 2 3 4 5 6 7 8

Under $50 Y Y Y Y N N N N
Pays by check Y Y N N Y Y N N
Pays by credit card Y N Y N Y N Y N
Call Supervisor N N N N Y Y N N
Check Photo ID Y Y Y N Y Y Y N
Proceed with sale Y Y Y Y N N Y Y

Assume that each purchase can be paid by only one method of payment: cash, check, or credit
card.

6. Problem: Simplify the original table by applying indifferent conditions.

7. Problem: Simplify the original table by detecting impossible conditions.

8. Problem: Simplify the original table by applying multi-valued conditions.



Chapter 8
Logic Circuits

Concepts of Boolean algebra remained a fringe science
for years until the development of the electronic com-
puter. With the advent of electric switches first as vac-
uum tubes, and today as transistors, operations such as
AND, OR, and NOT could be implemented in a physi-
cal form. Indeed, these operations form the foundation
of computing as we know it; all the advanced capa-
bilities of your computer boil down to an endless sea
(millions or more) of tiny microscopic switches imple-
menting logical expressions.

Logic Circuit: Boolean oper-
ations, indicated with spe-
cific symbols, connected
with wires which show or-
der of operation.

A logic circuit diagram shows how various operations
are connected together. Rather than relying on order of
operation and parentheses, as in a written expression,
a circuit diagram uses lines or “wires” to connect the
operations. The result of a logical circuit can be found
by tracing a true or false value from operation to op-
eration (along the wires) until it arrives at the end of
the circuit. Even if physical implementation is not our
goal, logic circuits provide a helpful conceptual frame-
work for visualizing logical expressions.

8.1 Fundamental Logic Gates

Each Boolean operation is visualized with a specific
symbol, called a gate. Most gates have one or two in-

73
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puts and one output; these correspond to whether the
operation is a binary operation (AND, OR, XOR, etc.)
or a unary operation (NOT). The output of a given gate
based on its inputs is usually defined by the appropri-
ate truth table.

The symbols for the fundamental gates are shown be-
low. Note that the inputs arrive on the left, and the
output is produced on the right. However, there is no
reason this directionality is essential. The gates can be
rotated or flipped in any way: the flatter side will be
the “input” side and the pointy side will be the “out-
put” side.

The exact shape of gates
may vary from one system
to another; the arrows are
used here only for clarifica-
tion and are not an essen-
tial part of the gate’s repre-
sentation.

AND

OR

NOT

In addition, for the purposes of this text, inputs (vari-
ables) will be defined with a square box, and the output
will be defined with a circle.

Input
(Variable)

Output
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8.2 Logic Circuits

A logical expression is specified by identifying each
variable, which becomes an input, and then connect-
ing, with wires, various gates to form the same order
of operations.

Logic circuits in this
book are produced using
the Logic Gate Simula-
tor software found at
http://www.kolls.net
/gatesim

� Example 8.1 • For example, consider the expression
x ∧ y. This expression has two variables, so there will
be two inputs. These inputs are the start of the flow
of true/false through the circuit. From the inputs, the
circuit will enter an AND gate, and the result thereof
will flow to the output.

�

� Example 8.2 • Consider the expression (x∧y)∨(¬x∧
¬y). Even though this expression is more complex, it
still has two distinct variables, so it will have two in-
puts. These inputs will be combined to form x∧ y, and
separately, they will be inverted to find ¬x and ¬y re-
spectively. These two values will be combined in an
AND, and finally an OR will complete the circuit.

A logic gate’s output may
be used many times (there
may be many wires con-
nected to an output), but a
particular logic gate’s input
may only have one source.

The software used to gen-
erate these circuits can
show the state (true/false)
of all parts of the circuit
by coloring wires that
have a “true” value. This
coloration may change de-
pending on various inputs
and is not an essential part
of the diagram.

�

It is possible to determine the result of a particular
configuration of inputs by tracing through the circuit

http://www.kolls.net/gatesim
http://www.kolls.net/gatesim
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from gate to gate. Light color means false, darker color
means true.

� Example 8.3 • Here is the state of the circuit if both
inputs are false. The circuit output is true in this case.

The previous diagram shows that if x is false and y is
also false, the output of the circuit is true. The same
circuit is now colored to show x being true and y being
false. This causes the circuit output to be false.

Circuits are evaluated
strictly by following wires
from gate to gate; the
placement of the gates
within the circuit is not
significant.

�

Each of these configurations correspond to a row in the
circuit’s truth table. It is possible to determine the en-
tire truth table for a circuit using this technique, one
input permutation at a time.

8.3 Compound and Universal
Gates

Four common compound gates exist. These gates are
so-called because they can be thought of as the con-
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nection of several other basic gates. In physical con-
struction, compound gates may not actually be made
of the basic gates, but they will have the same behav-
ior. In particular, NAND gates are cheap to make and
sufficient to represent any circuit, so many circuits are
constructed entirely of NAND gates.

The little circle at the out-
put edge of the gate means
“followed by NOT”. Be
very careful to notice when
this circle is present and ab-
sent; it makes a big differ-
ence!

NAND

NOR

XOR

XNOR

The NAND gate is AND followed by NOT. The NAND
gate is true when at least one of the inputs is false. The
NOR gate is OR followed by NOT. The NOR gate is
true when none of the inputs is true. The NAND and
NOR gates do not generally have their own Boolean
expression representation, but are represented in the
expanded form as ¬(x ∧ y) and ¬(x ∨ y) respectively.

The XOR gate is exclusive-or: one or the other, but not
both. This is represented in Boolean expression as x⊕y.
The standard definition of ⊕ can also be used to expand
the XOR gate into a circuit of basic gates.

Finally, the XNOR gate is exclusive-or followed by
NOT. Remember that XOR is true when either but not
both of the inputs are true. Therefore, XNOR is true
when neither or both inputs are true. This is the same
as equality in Boolean expressions: x ↔ y.

Universal Logic Gate: a gate
that can implement any
other logic gate or circuit.

NAND and NOR have a unique status as universal
logic gates. A sequence of NAND or NOR gates can
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be used to produce any other logic gate or circuit.
Therefore, it is often desirable to convert a circuit into
one consisting entirely of NAND or NOR gates. Even
though the gate count will be higher, production is sim-
plified by manufacturing only a single type of gate.

In order to be universal, a gate must possess two prop-
erties: it must have inversion (the ability to make a
false into a true, and vice versa), and it must have se-
lection (the ability to distinguish in its input true from
false). The gates AND, OR, and XOR lack inversion
(you cannot get a true out of these gates by feeding
only false values). The gates XNOR and NOT lack se-
lection (XNOR can only tell you if the inputs are equal,
but not if they are true or false; NOT has only one in-
put and so can’t have two or more different values at
once). This leaves only NAND and NOR from the gates
we have seen that are universal.

8.4 Converting to Boolean Expres-
sions

Every linear logic circuit (that is, a logic circuit with no
loops) can be converted into a Boolean expression, and
every Boolean expression can be converted into a logic
circuit. Like Boolean expressions, the only way to guar-
antee or disprove that two logic circuits are equivalent
is to create and compare truth tables for both. Simplifi-
cation of circuits using the Boolean algebra rules is also
a good technique.

A logic circuit can be converted to a Boolean expression
by building up subexpressions one gate at a time. Start
at the inputs to the circuit, and follow the wires to each
gate. Apply the Boolean operator of that gate to the
predetermined values of the inputs.

� Example 8.4 • For example, consider the following
circuit:
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Again: Circuits are evalu-
ated strictly by following
wires from gate to gate;
the placement of the gates
within the circuit is not sig-
nificant. The presence of
the AND gate “before” the
OR gate from left to right is
not significant. The order-
ing is determined by wire
sequence only.

Follow the wires from the inputs on the left to the first
gates encountered: the NOT gate on top and the OR
gate on the bottom. Write subexpressions for these
gates next to the gates themselves. These subexpres-
sions will form the input to subsequent gates.

Next, we can proceed to the AND gate in the mid-
dle. The AND gate places the logical AND operator
between the two inputs, which we take from the parts
of the circuit annotated.

Finally, the last AND gate combines the two subexpres-
sions we have calculated. Be sure to use parentheses to
enforce order of operations!
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The equivalent Boolean expression for this circuit is
(¬x ∧ y) ∧ (x ∨ y). Normal techniques can be used
to write a truth table for this expression (which would
also be the truth table for the circuit):

x y (¬x ∧ y) ∧ (x ∨ y)

T T F
T F F
F T T
F F F

By observation from the truth table, or by Boolean al-
gebra laws, the expression can be simplified to ¬x ∧ y,
which means the circuit can also be simplified:

�

8.5 Converting from Boolean Ex-
pressions

Given a Boolean expression, it is also possible to create
an equivalent logic circuit. Each operator in the expres-
sion will be represented by a gate in the circuit. The
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wiring process is inside-out: start at the innermost op-
eration, and build outward. Alternatively, you could
start at the output and build the circuit outside-in.

� Example 8.5 • For example, consider the expression
(¬x ∨ y) ∨ (x ∧ ¬y). By counting the operators, we can
tell the circuit will have two OR gates, two NOT gates,
and one AND gate. Using the inside-out approach, we
find there are two parentheses blocks. Entering the left
block, we know that the NOT binds strongest.

In this example, I place all
gates onto the canvas first,
and then connect them.
Unconnected gates serve
no inherent purpose, and
you could omit the gates
until you needed them.

Next, the other parentheses block is constructed simi-
larly. Note that it uses the same x and y input values.
This reuse of values is not a problem.
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Finally, the output of these two subexpressions are con-
nected with the OR gate, which provides the circuit
output (expression result).

�

� Example 8.6 • Consider the Boolean expression x ∧
y∧z. How could this expression be represented using a
logic circuit? A straightforward approach as described
previously would create two AND gates: one for x ∧ y
and the other for the output of that expression AND
with z. The circuit would look like:

An acceptable shorthand is to use a single AND gate
with more than two inputs. Binary AND, OR, NAND,
and NOR gates have a convention that allows multiple
inputs. These inputs extend the logical meaning of the
gate, in the same way that a sequence would. For ex-
ample, here is the same gate shown with a single three
input AND gate:

Multi-input NAND and
NOR gates still have only
one NOT operation at
the end. Therefore, a
multi-input NAND is not
like several NANDs in
sequence: it is like sev-
eral ANDs in sequence,
followed by a single NOT.
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�

A three input NOR with
variables x, y, and z would
have the expression ¬(x ∨
y ∨ z).

8.6 Partial Circuit Reuse

Circuits provide an opportunity, not exposed by
Boolean expressions, for taking advantage of reuse.
Reuse (after, perhaps, abstraction) is one of the most
important skills for a computer programmer, and logic
circuits provide an intuitive field for working with con-
cepts of reuse.

Reuse: using a single block
of code, expression, or part
of a circuit for several pur-
poses. Also referred to
as “DRY”, short for “Don’t
Repeat Yourself”.

� Example 8.7 • Consider the Boolean expression (x ∧
(y ∨¬z))∨¬(y ∨¬z). First consider a naive implemen-
tation of this expression into a circuit:

In the usual way, this circuit has one gate for each log-
ical operator in the expression. The wiring sequence
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follows the “inside out” order of operations, so this cir-
cuit is directly based on the expression.

Without simplifying the expression, however, we
could still simplify the circuit. Note that part of this
expression is repeated: y ∨ ¬z. Just as the values of y
and z are used multiple times in the circuit, the values
of y ∨ ¬z could be used multiple times. For simplicity,
we’ll let a = y ∨ ¬z. This subexpression can then, in a
sense, be considered like an input value into an expres-
sion. We can rewrite the expression to take advantage
of the definition of a, and provide a new circuit which
provides the value of a as defined.

It’s important to ensure
that such a replacement is
valid under order of op-
erations. For example, if
the expression included a
portion like x ∧ y ∨ ¬z,
without parentheses, trans-
forming that expression to
x ∧ a would NOT be valid
due to order of operations
being violated.

The new expression would be (x ∧ a) ∨ ¬a. This ex-
pression was found by simply replacing all references
to (y ∨ ¬z) in the original expression with a.

The sideways representa-
tion of several gates in this
diagram is for layout pur-
poses. The rotation of a
gate has no impact on its
operation.

The abbreviated circuit now uses only five gates, com-
pared to the original’s seven. This reduction is accom-
plished by reusing portions of the circuit which were
duplicated. �
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8.7 Disjunctive Normal Form

As discussed previously, a standard form for Boolean
expression is disjunctive normal form. This form is ver-
bose, though often the initial form of an expression if it
is derived from a truth table. The same form can also
be applied to logic circuits. This form is designed to
make circuit analysis more straightforward.

A logic circuit is in disjunctive normal form if:

• The circuit is entirely feed forward from inputs to
output. (That is, there are no loops in the circuit)

• Any NOT gates occur first, using only the origi-
nal inputs.

• Any AND gates occur next, using only the origi-
nal inputs and output from the NOT gates.

• The result of all the AND gates are combined in
an OR gate,

• which connects to the output.

A Boolean expression which is in disjunctive normal
form, when translated into a logic circuit, will yield a
logic circuit in disjunctive normal form. It is also pos-
sible to convert any feed forward logic circuit into dis-
junctive normal form. This would normally be accom-
plished by finding the truth table for the circuit, and
then reconstructing from the truth table the disjunctive
normal form expression.

� Example 8.8 • Consider the expression (x∧¬y)∨(x∧
y)∨ (¬x∧¬y). This expression is in disjunctive normal
form.
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�

Circuits in disjunctive normal form may be simplified
in many cases. In some cases, a simpler version of the
circuit still in disjunctive normal form is possible, as
long as the sequence rules are followed.
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8.8 Exercises

Solutions to these exercises can be found in Appendix A.8 on page 284.

1. Problem: Determine the output of the given circuit if x is false and y is true.

2. Problem: Show the definition of exclusive or, ⊕, in a circuit using only basic gates.

3. Problem: Create a Boolean expression for the circuit shown.

4. Problem: Create a Boolean expression for the circuit shown.
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5. Problem: Prove that NAND is universal by using NAND gates to construct circuits which
simulate:

(a) an AND gate

(b) an OR gate

(c) a NOT gate

6. Problem: Create a logic circuit for the expression ¬(¬a ∨ (a ∧ b)).

7. Problem: Create a logic circuit for the expression ¬(¬a∨¬b)∨(b∧(¬a∨¬b)). Take advantage
of reuse to avoid unnecessary gates.

8. Problem: Convert this circuit into disjunctive normal form.
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Chapter 9
Number Systems

In previous chapters, we have dealt with collections of
values, with an emphasis on true/false values. Now
we will move on to look at how these values can be put
together to form more complicated information. The
most important, and most fundamental, type of infor-
mation represented in a computer is a number. In or-
der to understand how computers store and manipu-
late numbers, some fundamental concepts of number-
ing must first be considered.

Number System: a notation
for representing numbers
using symbols.

Most modern humans represent numbers using the
Arabic decimal system. This system is positional,
which means that the location of a digit (the “place”)
determines the value of the digit. There are ten sym-
bols, called digits, each which represents a specific
value. In addition, the Arabic decimal system includes
the concept of zero, and has a symbol (digit) to repre-
sent it.

The most unusual number system in wide use is Ro-
man numerals. Roman numerals are neither positional
(X means 10 no matter where in the sequence it ap-
pears), nor do they generally have (or need) a symbol
for zero. Tally marks are another form of number sys-
tem. Tally marks use only one symbol (or two; if you
allow a five block to be a separate symbol) and do not
have a symbol for zero.

90
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9.1 Bases and Binary

Most computer number representations are based on
positional systems, with zero, like the decimal system.
However, because computers are fundamentally based
on true/false (two values) rather than counting with
fingers (ten values), the number systems used by com-
puters differ from the usual decimal system used by
people.

Base: number of symbols or
digits in a particular num-
ber system.

The number systems significant for our purposes can
be differentiated by bases. The base of a number sys-
tem is how many different symbols (digits) are avail-
able in that system. As usual, we start with 0 and count
up until we reach the highest digit. Then we return to 0,
add 1 to the next place over, and continue. The decimal
system is base 10 because there are ten unique symbols
(0, 1, 2, 3, 4, 5, 6, 7, 8, 9). If we want to count past 9,
the next number involves using two existing symbols
instead of a further unique symbol: 10.

The word decimal has root
deci, meaning ten.

Computers use only two symbols internally: true and
false. These are represented not as actual symbols, but
as different electric currents in a circuit. The values
of these symbols are numerically defined as 1 for true,
and 0 for false. There are two symbols, so this number
system is base 2, and is called binary. A symbol in bi-
nary (either 0 and 1) is also called a bit, short for binary
digit.

Binary: base 2 number sys-
tem with digits 0 and 1.

Bit: binary digit, a single
number with the value 0 or
1.

Counting in binary works the same as counting in dec-
imal, except that there are fewer symbols and so more
places are needed more quickly. Here are the binary
numbers zero through ten: 0, 1, 10, 11, 100, 101, 110,
111, 1000, 1001, 1010. In order to interpret these values,
the appropriate place values must be used. Decimal
has tens, hundreds, thousands, and so on. Mathemati-
cally, the places in decimal (from right to left in a num-
ber) are 100, 101, 102, and so on. Notice the reoccurring
10 here, due to decimal’s base 10. In binary, the place
values are 20, 21, 22, and so on.

For any base n, where n >
1, the place values from
right to left are n0, n1, n2,
and so on.

With multiple possible number bases in use, the simple
appearance of digits is no longer sufficient to define a
number’s value. What is 11? Is it eleven (base 10 inter-
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pretation), or is it three (base 2 interpretation)? In order
to clarify the interpretation of any number when mul-
tiple bases are in use, the base itself may be attached as
a subscript to the end of the number. For example, 1110
would be eleven, while 112 would be three.

Numbers with bases are
usually read as a sequence
of digits followed by their
base. For example, 1012
would be read “one zero
one base two”.

For any base n, where n >
1, 10n = n10 9.2 Octal and Hexadecimal

Although computers use binary internally, binary
numbers quickly become very large and awkward.
Therefore, two other bases are often used, which have
the advantage of being directly translatable to and
from binary.

Octal: base 8 number sys-
tems with digits 0 through
7.

Hexadecimal: base 16 num-
ber systems with digits 0, 1,
2, 3, 4, 5, 6, 7, 8, 9, A, B, C,
D, E, F.

Octal, base 8, directly represents three bits; Hex-
adecimal, base 16, directly represents four bits.
If we count in binary up to three bits, we get
0, 1, 10, 11, 100, 101, 110, 111. There are eight values in
that list (zero through seven in decimal). By using base
8, we can represent any three bit block with the sym-
bols 0 through 7. Hexadecimal works the same way
with four bits: there are sixteen different binary num-
bers of up to four bits.

Hexadecimal is often short-
ened to “hex”.

Hexadecimal does have one additional challenge: in
other bases, we generally use the same symbols as the
decimal system. However, the decimal system pro-
vides only ten symbols, and hexadecimal requires six-
teen. The six additional symbols are taken from the
English alphabet.

Like in decimal, other bases
may have 0’s added or re-
moved to the front of a
number without changing
its value.

� Example 9.1 • Consider the number 1101010000102.
We can easily represent this number in octal (base 8) by
breaking it into three bit chunks: 110 101 000 010. Then,
each three bit chunk is replaced by the appropriate sin-
gle octal digit, found by counting. 1102, for example,
corresponds to 68. The octal number is 65028. �

� Example 9.2 • Converting from octal to binary is the
same process in reverse: replace each octal digit with
the three corresponding bits. The octal number 1078
has the bit blocks 001 000 111, forming the binary num-
ber 10001112. Notice that the leading zeros were re-
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moved, as is common unless a fixed bit width is speci-
fied. �

Octal Binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

� Example 9.3 • Consider the same number
1101010000102. We can easily represent this number
in hexadecimal (base 16) by breaking it into four bit
chunks: 1101 0100 0010. Then, each four bit chunk is
replaced by the appropriate single hexadecimal digit.
If the value is greater than 9, then a letter symbol must
be used. In this case, the leftmost block 11012 = 1310.
We need a single symbol in hexadecimal to represent
the value 13. Which symbol? The convention is that
A16 = 1010, B16 = 1110 and so on. So we find 11012 =
D16. The complete conversion is D4216. �

Hexadecimal Binary
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
A 1010
B 1011
C 1100
D 1101
E 1110
F 1111
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In computer programs, it is uncommon to represent
binary numbers directly due to their length. Instead,
hexadecimal or occasionally octal are used as a form of
“short-hand” for binary. However, most programming
systems do not have the capability to use subscripts to
indicate the base of a number, so another convention
is used instead. Numbers that begin with the digit 0
may be considered to be octal numbers, that is, a num-
ber like 0537 would be interpreted as 5378. Numbers
that begin with 0x may be considered to be hexadeci-
mal numbers, that is, a number like 0x537 would be
interpreted as 53716. Although the digits in these two
numbers are the same, they have different values.

9.3 Converting to Decimal

Many websites, and usu-
ally the operating system’s
included calculator, will
perform a variety of base
conversions quickly and
easily.

Any number using a system like one we have seen here
can be converted to decimal by multiplying each digit
by its place value and adding the results. The place
values are found using the numbers base. For any
number abcn where a, b, and c are digits, and n is the
base, this number can be converted to decimal by tak-
ing the place values (from right to left) n0, n1, n2 (and
so on, if there were more digits), and multiplying each
place value by the respective digit, so c ∗ n0, b ∗ n1, and
a∗n2. The decimal equivalent is the sum of these terms:
a ∗ n2 + b ∗ n1 + c ∗ n0.

For any n, n0 = 1, so of-
ten just the digit value is
written without a multipli-
cation.

To make the conversion easier, it may be helpful to lay
out a conversion table consisting of each digit and the
digit’s place values. Such tables will be shown in the
examples.

� Example 9.4 • To take a concrete example, let’s con-
vert 56A316 into decimal. Lay out each digit, and below
it put the place value. Recall the place value is the base
of the number to the power of the digit position, with
zero being the rightmost digit.

5 6 A 3
163 162 161 160
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In the case of hexadecimal, we may need to substitute
in the value for any digit in the A through F range.

5 6 10 3
163 162 161 160 Recall that n0 = 1 and n1 =

n.

Using each place value, we can calculate the value of
each place, and then sum them.

5 ∗ 163 = 20480
6 ∗ 162 = 1536
10 ∗ 161 = 160
3 ∗ 160 = 3

22179

If an is a single digit num-
ber, then an = a10. Substi-
tution of the value for hex-
adecimal digits may be re-
quired.

Adding the results gives the value 22179, so we can say
56A316 = 2217910. The identical procedure (adjusted
for appropriate place values) suffices for numbers of
any length and of any base. �

If the number to convert has a fractional component,
the place values continue using negative powers.

� Example 9.5 • For example, consider converting
101.012 into decimal.

a−b =
1

ab

1 0 1 0 1
22 21 20 2−1 2−2

Calculate the place values. Note that the decimal point
is useful only in determining which powers the place
values have; it is not carried into the conversion, as
the negative exponents will automatically “do the right
thing”.

1 ∗ 22 = 4
0 ∗ 21 = 0
1 ∗ 20 = 1
0 ∗ 2−1 = 0
1 ∗ 2−2 = 0.25

5.25
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Adding the terms tells us that 101.012 = 5.2510. �

An alternative technique for converting a number to
decimal takes advantage of an algebraic property of
the previously described conversion. In the alternative
technique, the sum is computed incrementally rather
than all at once. Start with the left most digit. As long
as more digits remain, multiply the current result by
the base and add the next digit.

For example, to convert 5218 into decimal, we start
with the sum being 5. More digits exist, so multiply
the current sum by the base 5 ∗ 8 = 40 and add the next
digit 40 + 2 = 42. Another digit exists, so multiply the
current sum by the base 42 ∗ 8 = 336 and add the next
digit 336 + 1 = 337. No more digits remain, so this is
the final answer. 5218 = 33710.

For any two numbers with
the same digits but differ-
ent bases, call them ab and
ac, if b < c then ab < ac.

9.4 Converting from Decimal

Any decimal number can be converted to another base
using a process of repeated divisions. For these divi-
sions the remainder must be recorded. Most calcula-
tors do not show the remainder natively, so be sure to
find the remainder and not just use the fractional por-
tion.

Converting a decimal whole number to another base
begins by dividing the decimal number by the base.
Save the quotient (whole number result) for the next
cycle, and the remainder of the division is the digit.
The first division produces the rightmost digit. The
quotient (result) of the first division then becomes the
next decimal whole number to divide, and the process
repeats until the quotient is zero.

If using a calculator, you
can find the remainder
of any division a ÷ b by
first dropping the frac-
tional part to find the
whole number quotient,
represented as ⌊a ÷ b⌋.
Multiply this whole num-
ber result by b and subtract
from a with the formula
a − b ∗ ⌊a ÷ b⌋. For the
example of 506 ÷ 8, the
calculator shows 63.25. The
whole number quotient is
just 63. 506 − 8 ∗ 63 = 2, so
the remainder is two.

� Example 9.6 • For example, consider the number
50610. Convert this number into octal (base 8). First,
find 506÷ 8. This gives a quotient of 63 with a remain-
der of 2. Repeat the process with 63 ÷ 8 which gives a
quotient of 7, remainder 7. Finally, 7 ÷ 8 gives a quo-
tient of 0 with remainder 7. The process stops at this
point because the last quotient was 0. The resulting
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number is found by assembling the remainders, with
the first remainder being the rightmost digit. There-
fore, 50610 = 7728.

506÷ 8 = 63r2
63÷ 8 = 7r7
7÷ 8 = 0r7

�

� Example 9.7 • When a base larger than 10 is used, the
appropriate digit symbols must be substituted for any
remainder values 10 or larger. For example, consider
the number 25410. Convert this number into hexadeci-
mal (base 16). In this case, the division 254÷16 = 15r14.
Next, we take the quotient result and repeat the divi-
sion: 15 ÷ 16 = 0r15. The two remainders, with the
first being the rightmost, are 14 and 15. Each of these
should correspond to one symbol, so the appropriate
answer is FE16. In this case, 151416 would not be cor-
rect!

254÷ 16 = 15r14
15÷ 16 = 0r15

�

If the original decimal number has a fractional portion,
the whole number and fractional portion must be con-
verted separately using a slightly different algorithm.
First, convert the whole number portion as already de-
scribed. Take the fractional portion and multiply it by
the base. Separate the resulting whole number part and
fractional part. The whole number parts are the digits,
left to right, which follow the decimal. The multiplica-
tion proceeds on each fractional result until the result
is entirely a whole number, or you choose to stop (say,
in the case of repeating fractional parts).

Different bases differ on
whether a particular value
is repeating or terminating
right of the decimal. This
concept will be explored
more in the exercises.

� Example 9.8 • For example, convert 4.62510 into bi-
nary (base 2). The whole number portion, 410, is con-
verted into 1002. We then take the fractional portion
0.625∗2 = 1.25. The whole number portion is 1, and we
repeat the multiplication with the fractional portion,
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yielding 0.25 ∗ 2 = 0.5. The whole number portion is
0, and we repeat the multiplication with the fractional
portion, yielding 0.5 ∗ 2 = 1.0. There is no more frac-
tional portion, so we stop.

0.625 ∗ 2 = 1.25
0.25 ∗ 2 = 0.50
0.5 ∗ 2 = 1.00

The whole number results, from top to bottom, are 101.
This becomes the portion right of the decimal. There-
fore, 4.62510 = 100.1012. �

9.5 Unary

The unary number system (base 1) has only one sym-
bol, and so behaves differently from other bases. It has
no representation of zero (except just blank), and the
number of marks (instances of the symbol) indicate the
value of the number being represented. Unary num-
bers, or concepts based on them, are occasionally used
in theoretical computer science, but not usually in any
practical application.
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9.6 Exercises

Solutions to these exercises can be found in Appendix A.9 on page 297.

1. Problem: An IPv6 address is comprised
of eight blocks of four hexadecimal
digits. How many bits long is an IPv6
address?

2. Problem: Convert the octal number 7378
into hexadecimal.

3. Problem: Convert the binary number
1011102 into hexadecimal.

4. Problem: Convert the hexadecimal
number 5D6B16 into decimal.

5. Problem: Convert the number 40335
into decimal.

6. Problem: Convert the number 51.158
into decimal.

7. Problem: Convert the decimal number
53.310 into binary.

8. Problem: Order the numbers from least
to greatest: 1238, 1234, 12316, 12310.



Chapter 10
Integer Numbers

Computers represent all data internally in binary: just
binary. There are no built-in representations for a dec-
imal point, or a negative sign. Computers are also ex-
pected to perform input and output, which involves
converting binary numbers to and from their compo-
nent decimal digits. The most fundamental computa-
tions are those involving integer numbers: positive and
negative whole numbers.

Integer: positive or negative
whole number.

Integers are represented internally with a fixed bit
width, regardless of the numbers value. Several com-
mon sizes are available to the programmer.

Bits Name
4 nibble
8 byte
16 short
32 long
64 long long

Longer integers may also be supported by a particular
programming system, but usually not directly by the
processor.

100
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10.1 Unsigned Integers

The simplest type of integer is the unsigned integer.
The numeric value of these numbers follows the usual
binary conversion with no special cases. The impor-
tant thing to remember is that there will be a specific
width which must be maintained regardless of the nu-
meric value. For example, to represent 1210 as an 8-bit
unsigned integer, the result would be 0000 11002.

Breaking binary numbers
into 4-bit blocks is common
for visual purposes. How-
ever, there is no actual sep-
aration or grouping within
the machine.

Unsigned integers of n bits
have the range [0, 2n − 1].

The lowest value representable using unsigned inte-
gers is zero. The maximum value of an unsigned in-
teger of n bits is 2n − 1. The “minus 1” is due to the
zero taking up a spot.

10.2 Unsigned Addition

Addition of integer numbers follows the same princi-
ples as decimal addition. However, due to base 2, there
are only four possible situations per bit pair:

0 + 0 = 0
1 + 0 = 1
0 + 1 = 1
1 + 1 = 10

As in decimal addition, if a two bit result is created,
perform a carry. Considering all possible carry situa-
tions, the total number of possibilities rises to eight.

0 + 0 + 0 = 0
0 + 1 + 0 = 1
0 + 0 + 1 = 1
0 + 1 + 1 = 10
1 + 0 + 0 = 1
1 + 1 + 0 = 10
1 + 0 + 1 = 10
1 + 1 + 1 = 11
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� Example 10.1 • For example, to add the 4-bit num-
bers 01012 and 00112, use the normal addition tech-
nique and carry whenever a two-bit result is created:

1 1 1

0 1 0 1
0 0 1 1
1 0 0 0

Thus, 01012 + 00112 = 10002. This result can be con-
firmed by converting the binary numbers back to deci-
mal: 510 + 310 = 810. �

� Example 10.2 • Consider, however, adding the 4-bit
numbers 10102 and 01112.

1 1

1 0 1 0
0 1 1 1
10 0 0 1

Overflow: condition caused
when the result of an arith-
metic operation is too large
for the number of bits
available.

Many programming lan-
guages do not indicate an
error condition on over-
flow. The programmer
must be careful to avoid
situations where overflow
may occur, or check for it if
the possibility exists.

What to do with the “10” on the left? If there were more
bits, we would simply carry the 1. What happens in
this case? If there are a fixed number of bits, any bits
beyond that limit are lost, and an overflow occurs, in-
dicating that calculation could not be completed suc-
cessfully. Thus, in 4 bits, 10102 + 01112 = 00012 with
overflow. A processor cannot simply add more bits, as
it is physically constructed and wired to use a particu-
lar bit size. �

Arithmetic overflows have
occasionally caused serious
problems, such as the crash
of Ariane 5 Flight 501. See
http://en.
wikipedia.org/wiki/
Ariane 5 Flight 501

10.3 Signed Integers

Several techniques for representing negative numbers
have been considered. The simplest is to take the left-
most bit and make it a sign bit (0 for positive, 1 for
negative). Another technique is to invert (replace all 1s
with 0s, and all 0s with 1s) all the bits when a negative
number is to be represented (known as one’s comple-
ment). However, both of these techniques have two
weaknesses:

http://en.wikipedia.org/wiki/Ariane_5_Flight_501
http://en.wikipedia.org/wiki/Ariane_5_Flight_501
http://en.wikipedia.org/wiki/Ariane_5_Flight_501
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1. They both have two distinct values for zero.
Specifically, using the sign bit: 0000 and 1000, in
4 bit. Using inversion: 0000 and 1111, in 4 bit.
This wastes a sequence and causes one less repre-
sentable number. It also means special code must
be inserted to normalize the zero, since 0 is al-
ways 0.

2. They require special handling for addition and
subtraction. The signs of each number must be
determined and the outcome sign calculated.

In the early days of computing more than now, circuit
space was at a premium. Rather than implement the
extra circuitry needed for either of these techniques,
designers discovered a technique which had neither
weakness. This technique has only one representation
of zero, and can use the same addition circuits as are
used for unsigned numbers for both addition and sub-
traction of positive and negative numbers.

Two’s Complement: most
common system for rep-
resenting signed integers
in binary; conversion be-
tween positive and nega-
tive is achieved by invert-
ing and adding one.

The Two’s Complement system is based on two simple
rules:

1. If the leftmost bit is zero, the number is positive.
If the leftmost bit is one, the number is negative.

2. The unsigned (positive) value of a negative num-
ber can be found by inverting (replace all 1s with
0s, and all 0s with 1s) all bits and then adding one.
This procedure also works identically to find the
negative value of a positive number.

Invert: in a binary se-
quence, replace all 1s with
0s, and all 0s with 1s.

Due to the significance of the leftmost bit, it is vital
when using Two’s Complement to note the bit width
and stick to it. For these examples we will use 8-bit
Two’s Complement. We will use the subscript “2C” to
indicate signed Two’s Complement numbers.

Numbers with the leftmost bit of zero are treated in the
usual way. For example, 0101 01012C = 8510. Likewise,
zero remains 0000 00002C = 010.

If the leftmost bit is 1, then the number is negative.
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� Example 10.3 • To find the unsigned value, invert all
bits and add one. For example, 1010 10102C is negative,
so we invert, giving 0101 0101 and add one.

1

0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 1
0 1 0 1 0 1 1 0

When converting from
Two’s Complement, re-
member that the “invert
and add one” step is ONLY
performed if the number
is negative, that is, starts
with a 1.

Thus, 1010 10102C = −0101 01102 = −8610. �

The same technique works in reverse.

� Example 10.4 • For example, if we want to find
the 8-bit Two’s Complement representation of −5310,
start with the unsigned representation of 53: −5310 =
−0011 01012. The number is negative, so invert and
add one.

1 1 0 0 1 0 1 0
0 0 0 0 0 0 0 1
1 1 0 0 1 0 1 1

The result is the Two’s Complement representation:
−5310 = −0011 01012 = 1100 10112C . �

Likewise, when converting
to Two’s Complement, re-
member that the “invert
and add one” step is ONLY
performed if the original
number is negative.

Computers are interested in the unsigned value in bi-
nary, so they apply the invert and add one technique.
If instead, a direct conversion to decimal is desired,
a shortcut exists. Simply put the Two’s Complement
(positive or negative) into the conversion table and
make the leftmost conversion factor negative.

� Example 10.5 • For example, we can convert the just-
found result back into decimal directly.

1 1 0 0 1 0 1 1
−27 26 25 24 23 22 21 20

Add each value.
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1 ∗ −27 = −128
1 ∗ 26 = 64
0 ∗ 25 = 0
0 ∗ 24 = 0
1 ∗ 23 = 8
0 ∗ 22 = 0
1 ∗ 21 = 2
1 ∗ 20 = 1

−53

The sum is -53, exactly as expected. �

Two’s Complement represents the same number of val-
ues as an unsigned field of the same width, but the rep-
resentation is shifted to allow approximately half neg-
ative and half positive values. There is one additional
negative number available, because zero takes a spot
on the positive side.

Two’s Complement
(signed) integers of
n bits have the range
[−2n−1, 2n−1 − 1].

10.4 Signed Addition and Subtrac-
tion

Using Two’s Complement, subtraction need not be di-
rectly implemented in circuitry. Instead, any computa-
tion of the form a− b can be computed as a+(−b), that
is, invert and add one to b, and then add to a. Addition
operates as specified previously, except that an over-
flow condition no longer indicates an error in Two’s
Complement. Instead, an arithmetic error must be de-
tected by checking the outcome of the sign bit and see-
ing if it meets expectation. Adding two positive num-
bers should yield a positive, adding two negative num-
bers should yield a negative result. Adding a positive
and a negative cannot result in overflow.

� Example 10.6 • For example, consider the problem
2210 − 3310. Subtraction is not supported, so this be-
comes 2210 + (−3310). Next, convert each value into bi-
nary. Two’s Complement requires a specific bit width
to function correctly; we’ll choose eight bits. The prob-
lem becomes 0001 01102 + (−0010 00012). We can then
translate these values into Two’s Complement. The
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first value is positive, so nothing changes. The second
value is negative, so invert and add one. This gives the
new situation 0001 01102C + 1101 11112C .

1 1 1 1

0 0 0 1 0 1 1 0
1 1 0 1 1 1 1 1
1 1 1 1 0 1 0 1

The result of the addition is 0001 01102C+1101 11112C =
1111 01012C . The leftmost bit is one, so the entire num-
ber is negative. To find the unsigned value, we can in-
vert and add one. Thus, 1111 01012C = −0000 10112 =
−1110. �

With any number of bits, if
a Two’s Complement num-
ber is all 1s, then the value
is -1.

� Example 10.7 • To see how the overflow signal no
longer indicates an arithmetic error, consider −110 +
−110. For simplicity, we’ll do this one in four bits. The
number is negative, so invert (00012 becomes 1110) and
add one, giving 11112C . We now have 11112C + 11112C .

1 1 1

1 1 1 1
1 1 1 1
11 1 1 0

The extra 1 is thrown away, and triggers an overflow
condition. However, the overflow condition is not sig-
nificant here, as 11102C is the correct result. Instead
of checking the overflow condition, the sign bit con-
sistency should be checked instead whenever dealing
with Two’s Complement. �

� Example 10.8 • An example of a Two’s Complement
arithmetic error can be demonstrated by attempting to
perform 710 + 610 in four-bit Two’s Complement. Each
of these numbers is positive, and so convert directly
into 01112C + 01102C

1 1

0 1 1 1
0 1 1 0
1 1 0 1
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Note that no overflow occurs in this situation. How-
ever, the result of 11012C is negative (because the left-
most bit is 1), which seems unlikely given the addition
of two positive numbers. This is how checking the sign
bit can detect Two’s Complement arithmetic errors. �

10.5 Binary Multiplication

Binary multiplication is performed by repeated shift-
ing and addition. Shifting refers to the process of
adding or removing the rightmost bit of a binary num-
ber. For multiplication, a left shift (adding a zero to the
right side of a binary number) is used. For each 1 bit
in the number to be multiplied, shift that number by
the bit’s position (with the rightmost bit being a shift
of zero), and sum all the results. Left shift is often de-
noted x ≪ p where x is the number to be shifted and p
is how many positions to shift it. For example, 11012 ≪
102 = 1101002. Left and right shifts, in computing, are
always performed at the binary level, regardless of the
bases of the inputs. So 1310 ≪ 210 = 5210.

� Example 10.9 • For example, multiply 310 ∗ 510 in
binary. Start with 310 = 112 and 510 = 1012. Then find
112∗1012. In this case, note that the number 1012 has a 1
bit in the first place and the third place. Thus, shift 112
by zero and two, respectively, obtaining 112 ≪ 210 =
11002 and 112 ≪ 010 = 112. Add these results together
to get the final answer: 11112 = 1510. �

This technique works correctly for Two’s Complement
numbers as well, as long as there is enough room to
store the result. When left shifting a fixed width num-
ber, discard bits that fall off the left as zeros are added
to the right to maintain the same width.

Left shifting a fixed width
value causes the bit(s) on
the left to simply “fall
away”. Do not extend the
width of the number, as the
computer does NOT gain
any additional width dur-
ing these computations.

� Example 10.10 • For example, multiply −410 ∗ 310
in eight bit Two’s Complement. Start with −410 =
1111 11002C and 310 = 0000 00112C . The number
0000 00112C has a 1 bit in the first and the second place.
Thus, shift 1111 11002C by zero and one, respectively,
and add the results: 1111 11002C + 1111 10002C
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1 1 1 1

1 1 1 1 1 1 0 0
1 1 1 1 1 0 0 0
11 1 1 1 0 1 0 0

Multiplying by a power of
2 can be accomplished in a
single step by shifting left
by that power. In other
words x ∗ 2n = x ≪ n

The extra 1 bit falls off, and the result is 111101002C =
−1210.

Multiplication is commutative, so this example could
be done as 310 ∗ −410 instead. In that case, we would
use 1111 11002C to determine how much to shift. The
number has a 1 bit in the third through eighth places,
indicating shifts of two through seven. The number to
be shifted is 0000 00112C .

1 1 1 1

0 0 0 0 1 1 0 0
0 0 0 1 1 0 0 0
0 0 1 1 0 0 0 0
0 1 1 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
11 1 1 1 0 1 0 0

Although considerably more shifting and addition
was needed for this process, the result is the same:
1111 01002C = −1210. �

10.6 Binary Coded Decimal

Numbers are input and output in decimal, one digit
at a time. Binary coded decimal (BCD) is a technique
for representing decimal numbers in binary based on
their digits. Each digit is represented with a 4-bit block,
using the normal binary conversions (0000 for 0 up
through 1001 for 9). For example, 5310 = 0101 0011BCD.
Some conventions of BCD take advantage of the re-
maining blocks (1010 through 1111) to define control
sequences, or to indicate positive/negative numbers.

The number of bits re-
quired for a BCD represen-
tation of a base-10 number
is ⌈log10(n+1)⌉∗4 (if n is in
base 10).

Conversion from BCD to binary involves looking up a
binary multiplier for each position (the digit value) and



SECTION 10.6 | Binary Coded Decimal 109

performing binary multiplication. Take each 4-bit digit
block, and multiply it by the position value (rightmost
digit is 12, next digit is 10102, next digit is 11001002, and
so on) and sum the results.

The number of bits re-
quired for a BCD represen-
tation of a base-2 number
of n bits is ⌈log10 2n⌉ ∗ 4.

� Example 10.11 • For example, to convert
0101 0011BCD into binary, first multiply each 4-bit
block by the position value. This gives 01012 ∗ 10102
and 00112 ∗ 12. Any value multiplied by 1 is just
itself, so the only “real” multiplication to solve is
01012 ∗ 10102. The number 10102 has a 1 bit in the
second and fourth place, indicating a shift of one and
three, respectively.

1

1 0 1 0
1 0 1 0 0 0
1 1 0 0 1 0

The sum 1100102 = 5010 gives that particular digit. We
then add the other digit, 00112

1

1 1 0 0 1 0
1 1

1 1 0 1 0 1

Thus, the value 0101 0011BCD = 1101012 = 5310. �

Double Dabble: a shift and
add algorithm to translate
binary into BCD.

Conversion from binary to BCD is accomplished us-
ing the double dabble algorithm, which involves shift-
ing and addition. The double dabble algorithm is fast
and straightforward, but does require some mental
gymnastics to consider bits as varying representations
throughout the transformation.

To set up for the double dabble algorithm, a numeric
space is prepared by determining how many decimal
digits will be required. Each decimal digit is repre-
sented initially by four zero bits. These bits are fol-
lowed by the original binary representation.

Rather than pre-calculating
the number of BCD blocks
required, it is possible to
dynamically allocate them
by adding a block when-
ever a left shift would push
1 off the edge. Alterna-
tively, and as occurs in
most practical applications,
a preset fixed number of
blocks are allocated. For
example, on a digital clock,
the minute part always has
two blocks.The algorithm proceeds iteratively for as many bits as

the original number has. At each step:
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1. For any BCD block greater than 4, add 3 to it.
(Note the result may not be valid BCD, but this
is not a problem)

2. Shift left the entire space.

� Example 10.12 • For example, to convert the binary
number 110100112 into BCD, we would first determine
that three decimal digits are needed. The initial space
is thus 0000 0000 0000 11010011. The three blocks will
become the three BCD digits, but the entire space will
be used for shifting.

In order to track when the bits are consumed, we will
not add zeros on the right hand side when shifting left.
This way, when all of the initial number is gone, it will
be clear because only the BCD blocks will remain.

BCD Blocks Input Operation
1. 0000 0000 0000 11010011 Start
2. 0 0 0 none > 4
3. 0000 0000 0001 1010011 Shifted Left
4. 0 0 1 none > 4
5. 0000 0000 0011 010011 Shifted Left
6. 0 0 3 none > 4
7. 0000 0000 0110 10011 Shifted Left
8. 0 0 6 Rightmost block exceeds four
9. 0000 0000 1001 10011 Added 112 to rightmost block
10. 0000 0001 0011 0011 Shifted Left
11. 0 1 3 none > 4
12. 0000 0010 0110 011 Shifted Left
13. 0 2 6 Rightmost block exceeds four
14. 0000 0010 1001 011 Added 112 to rightmost block
15. 0000 0101 0010 11 Shifted Left
16. 0 5 2 Middle block exceeds four
17. 0000 1000 0010 11 Added 112 to middle block
18. 0001 0000 0101 1 Shifted Left
19. 1 0 5 Rightmost block exceeds four
20. 0001 0000 1000 1 Added 112 to rightmost block
21. 0010 0001 0001 Shifted Left, final result

Thus, 110100112 = 0010 0001 0001BCD = 21110. �
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10.7 Exercises

Solutions to these exercises can be found in Appendix A.10 on page 303.

1. Problem: Show how the computer per-
forms the unsigned addition 4510+1710
in eight bit binary.

2. Problem: What happens when the com-
puter attempts to perform the un-
signed addition 20110 + 9910 in un-
signed eight bit binary? How can the
error be detected?

3. Problem: Show how the computer rep-
resents −7710 in eight bit Two’s Com-
plement.

4. Problem: Show how the computer per-
forms the subtraction 1310 − 2310 in
eight bit Two’s Complement.

5. Problem: Show how the computer per-
forms the addition −2010+2310 in eight
bit Two’s Complement.

6. Problem: What happens when the com-
puter attempts to perform the addi-
tion −10010+(−8010) in eight bit Two’s
Complement? How can the error be
detected?

7. Problem: Convert the number 35410 into
binary via BCD.

8. Problem: Convert the number 28710 into
BCD via binary.



Chapter 11
Floating Point Numbers

Early computers could only calculate based on inte-
gers. Calculations with fractional values are important
to many fields which used computers, such as science,
engineering, and economics, so development of a tech-
nique for representing and computing with fractional
values occupied many developers’ minds. The main
requirements for fractional values were a large repre-
sentational range (as users might be using very small
values, and others might be using very large values),
and the ability to implement the mathematical opera-
tions into hardware. Today, two primary floating point
representations exist (binary and decimal), both codi-
fied in the IEEE-754 standard.

Floating Point: representa-
tion of a number using a
form of scientific notation,
where the position of the
decimal point is separated
from the numeric digits.

11.1 Scientific Notation

Floating point numbers apply the concept of scientific
notation. Any number large or small can be repre-
sented in scientific notation using an exponent. For ex-
ample, 35909 = 3.5909 ∗ 104. Likewise, 0.00000543 =
5.43 ∗ 10−6. This form, with exactly one non-zero digit
left of the decimal, is known as normalized exponential
form.

The general form of any scientific notation is ±s ∗ be,
where s represents the significant digits, b is the base,

112
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and e is the exponent. When computers output in base
10 and exponents are involved, the letter e is some-
times used. For example, 5.43 ∗ 10−6 may be output
as 5.43e-6.

Like integer numbers, with a fixed number of bits
available, there are limits to the range of numbers that
can be represented. In floating point numbers, these
limits appear both in the exponent and the significant
digits. Limitations of the exponent restrict the upper
and lower range of the number, while limitations of
the significant digits restrict how much rounding or ap-
proximation is required to represent a number.

Binary floating point numbers are based on binary
scientific notation. Numbers are generally converted
from standard form decimal into binary, and then into
scientific notation.

� Example 11.1 • For example, consider the value
−200.62510. Recall the procedure for converting a dec-
imal value into binary involves converting the whole
number and fractional portion separately. Multiply the
fractional portion repeatedly by 2, separating and re-
taining the whole number 1 or 0 as the digits.

The conversion of frac-
tional decimals into binary
is discussed in the chapter
on number systems.

In this case, we take the fractional portion 0.625 ∗ 2 =
1.25. The whole number portion is 1, and we repeat
the multiplication with the fractional portion, yielding
0.25 ∗ 2 = 0.5. The whole number portion is 0, and
we repeat the multiplication with the fractional por-
tion, yielding 0.5 ∗ 2 = 1.0. There is no more fractional
portion, so we stop. The whole number results, from
left to right, are 101.

Combined with the left hand side, where
20010 = 110010002, we have an entire conversion
of −200.62510 = −11001000.1012. To represent this
value in scientific notation, we shift the decimal point
until a single digit (bit) remains left of the decimal
place. The count of how many shifts are needed forms
the exponent. In this case, we must move the decimal
place left 7 places.

The final representation is −11001000.1012 =
−1.10010001012 ∗ 27. Note that the base is 2 in-
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stead of 10, as the significant digits are in binary
instead of decimal. �

� Example 11.2 • Likewise, consider the repre-
sentation of 0.0937510 into binary scientific notation.
Converting the fractional portion into binary gives
0.000112. To convert to scientific notation, the decimal
point must move right four spaces, yielding 1.1 ∗ 2−4.
�

Given a number in normal-
ized exponential notation,
in the form ±s ∗ be, if e < 0
then the entire value is in
the range (−1, 1). If e ≥
0, then the value is outside
that range.

11.2 Binary Number Composition

Floating point numbers are always a fixed bit width,
and are composed of three parts: a sign bit, an expo-
nent, and the significant digits. The significant digits
portion of the number is often called the mantissa, sig-
nificand, or coefficient. For each given bit width, the
distribution of bits between the exponent and signifi-
cand are fixed; the sign bit is always a single bit. The
bulk of the bits are usually given to the significand. In
addition, the exponent (which may be positive or neg-
ative) is not represented using Two’s Complement, but
using a separate technique known as biasing.

Significand: portion of a
floating point number con-
sisting of the significant
digits.

Bias: the amount a stored
value is offset from its ac-
tual value.

Exponent bias works by adding the bias to the expo-
nent, and then storing the result as an unsigned inte-
ger. When the number is processed, the bias is sub-
tracted from the exponent value to find the actual ex-
ponent. This allows positive and negative exponents to
be converted into unsigned integers. The bias is always
added, regardless of whether the original exponent is
positive or negative.

Implicit Bit: the leftmost
one in binary normalized
exponential form that is as-
sumed to be present but
not actually stored.

In all binary numbers except 0, normalized exponential
form will place a 1 to the left of the decimal place. As
this 1 will always be present (except in the case of 0), it
is not stored in the floating point number, saving one
bit. Thus, the number of significand bits represented is
one more than actually stored.

With these rules, the procedure for representing a num-
ber in binary floating point is the same for all bit
widths, except that the appropriate sizes and exponent
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bias must be used. If n is the number of ex-
ponent bits, then the expo-
nent bias is 2n−1 − 1.The IEEE standard defines four binary floating point

sizes: 16-bit (half precision), 32-bit (single precision),
64-bit (double precision), and 128-bit (quadruple preci-
sion). Double precision floating point is the most com-
mon form.

The total number of bits in
a floating point number is
the exponent bits plus the
significand bits, plus one
for the sign bit.

Total Bits Exponent Bias Exponent Bits Sig. Bits
16 15 5 10
32 127 8 23
64 1023 11 52
128 16383 15 112

The sign bit (1 for negative, 0 for positive) is always the
leftmost (most significant) bit. The exponent follows,
and the significand comes last. The rightmost (least
significant) bit of a floating point number corresponds
to the rightmost (least significant) bit of the significand.

� Example 11.3 • Consider representing the simple
number 110 = 12 = 1.02 ∗ 20 in 16-bit floating point.
The number is positive (sign bit = 0), the biased expo-
nent is 010 + 1510 = 1510 = 11112, and the significand
is all zeros. Recall that the one that is left of the deci-
mal place is not represented in the significand, it is an
implicit bit.

There is no innate distinc-
tion within the computer
as to which bits form the
sign, exponent, or signif-
icand. Instead, the pro-
cessor knows what kind of
number it is expecting, and
it knows how many bits are
used for each part, and so it
divides up the number into
the appropriate parts.

Be sure that each component exactly fills (padding or
truncating as needed) its allotted bits. The biased expo-
nent is allotted five bits, so it will be 01111. The signifi-
cand is allotted 10 bits, so it will be 00 0000 0000. Thus,
the final representation is 0011 1100 0000 0000. The five
underlined bits represent the biased exponents: the bit
to the left is the sign bit, and the bits to the right are
the significand. Due to the size of floating point num-
bers, they are often shown in hexadecimal, in this case,
3C0016. �

If the binary representation
of the biased exponent ex-
ceeds the number of ex-
ponent bits allotted, or is
the biased exponent is neg-
ative, the number is too
large or too small to be rep-
resented with the number
of bits available.

� Example 11.4 • Taking another example started ear-
lier, we found that −200.62510 = −1.10010001012 ∗ 27.
This number can also be represented in 16-bit floating
point. The number is negative (sign bit = 1), the biased
exponent is 710 + 1510 = 2210 = 101102, the significand
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is up to ten bits right of the decimal point. In this case,
there are exactly ten bits right of the decimal point, so
the significand is 1001000101.

Attaching these three pieces together, the final floating
point representation is 1101 1010 0100 0101, or in hex
as DA4516. Again, the underlining delineates the ex-
ponent portion from the sign and significand. The un-
derline itself appears for clarity only and is not actually
stored with the number. �

Converting from floating point representation back
into an actual number is simply the reverse process.
Remember to subtract, rather than add, the exponent
bias on the conversion back.

� Example 11.5 • For example, to convert the 16-
bit floating point number ABCD16 into its value, start
with the binary equivalent: 1010 1011 1100 1101.

Identify the portions, including the sign bit, biased
exponent, and significand: 1010 1011 1100 1101. The
sign is 1, so the number is negative. The exponent is
010102 = 1010 − 1510 = −510. Remember to place the
significand right of the decimal place, and the implicit
1 left of the decimal place. This gives the scientific no-
tation −1.11110011012 ∗ 2−5.

If desired, this value could be converted into standard
notation: −1.11110011012 ∗ 2−5 = −0.0000111110011012
and even back into decimal.

0 0 0 0 1 1 1 1 1 0 0 1 1 0 1
2−1 2−2 2−3 2−4 2−5 2−6 2−7 2−8 2−9 2−10 2−11 2−12 2−13 2−14 2−15

Add up each place.
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0 ∗ 2−1 = 0
0 ∗ 2−2 = 0
0 ∗ 2−3 = 0
0 ∗ 2−4 = 0
1 ∗ 2−5 = 0.03125
1 ∗ 2−6 = 0.015625
1 ∗ 2−7 = 0.0078125
1 ∗ 2−8 = 0.00390625
1 ∗ 2−9 = 0.001953125
0 ∗ 2−10 = 0
0 ∗ 2−11 = 0
1 ∗ 2−12 = 0.000244140625
1 ∗ 2−13 = 0.0001220703125
0 ∗ 2−14 = 0
1 ∗ 2−15 = 0.000030517578125

0.060943603515625

Attach the whole number portion (none in this
case), and apply the sign bit. The final value is
−0.06094360351562510 Of course, if the application is
satisfiable with a smaller number of significant digits,
say three or four, the process could be somewhat ab-
breviated. �

11.3 Special Cases

There are a few cases which do not follow these rules:
these cases are denoted by an exponent block of all 0s
or all 1s. If the exponent block is 0, this indicates ei-
ther the value of zero (if the significand is zero) or a
subnormal number. If the exponent block is all 1s, this
indicates an error condition: either an infinity value (if
the significand is zero), or “not a number” (NaN). In-
finities and NaNs are generated by operations which
exceed the representational capability of the number,
or which do not have a defined result (such as dividing
by zero).

Subnormal Number: non-
normalized numbers that
fill in near zero to help
avoid truncating to zero.

Unlike normalized numbers, subnormal numbers do
not have the implicit 1 bit left of the decimal point. In-
stead, a 0 bit is used. This allows numbers smaller than
would normally be allowed by the exponent limit. For
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example, in 16-bit floating point, the smallest positive
normalized number would be 0000 0100 0000 0000. The
biased exponent is 110, subtract the exponent bias to
find the actual exponent: 110 − 1510 = −1410. Place the
implicit 1 left of the decimal point, and you have the
smallest normalized positive value: 1.0 ∗ 2−14.

If we switch to subnormal numbers, then the implicit
1 left of the decimal goes away. The smallest positive
subnormal number would be 0000 0000 0000 0001. The
exponent is converted in the usual way: 010 − 1510 =
−1510, however, NO implicit 1 is placed left of the dec-
imal, giving: 0.0000 0000 01 ∗ 2−15 = 1.0 ∗ 2−24.

11.4 Floating Point Errors

Although some numbers can be exactly represented in
floating point, most numbers require rounding. Even
innocuous looking numbers like 3.310 cannot be exactly
represented in binary floating point, the conversion
from 0.310 into binary is not exact. The floating nature
of the decimal point also means that certain operations
will produce different results if they are performed in
a different order. Consider some actual outputs using
32-bit floating point (all numbers shown are base 10):

Every binary floating point
value can be considered to
be a fraction in the form
a

2b
. If the value to be

represented cannot be rep-
resented in decimal with
a denominator of 2b, then
no exact floating point rep-
resentation is possible, no
matter how many bits are
allotted.

• 1.1 + 2.2 = 3.3000002

• 1.1 + 2.2 - 2.2 = 1.1000001

• 1.2 - 1.1 = 0.100000024

• 1.2 - 1.1 == 0.1 = false

• 1 + 1000000000 = 1000000000

These errors seem very small, but they compound
when many operations are used. Consider adding to-
gether ten million numbers: all the numbers are 0.1.
This should be the same as 0.1 ∗ 10 000 000 = 1 000 000.
Consider what actually happens when this operation is
performed as ten million additions rather than a multi-
plication. Throwing a larger number into the mix also
has unexpected results:
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• With ten million 0.1 values, 0.1 + 0.1 + 0.1
... + 0.1 = 1087937.0

• Beginning with a large number, and retaining the
ten million small numbers, 1000000 + 0.1 +
0.1 ... + 0.1 = 2097152.0

• Ending with a large number instead, 0.1 +
0.1 + 0.1 ... + 0.1 + 1000000 =
2087937.0

These errors are not programming language specific,
and do not go away with additional bits (although
additional bits decrease the amplitude of the errors).
Therefore, whenever binary floating point is in use, a
few guidelines should always be kept in mind:

Scientific measurements,
which are often of lim-
ited precision to begin
with, are a good candidate
for binary floating point
numbers.

1. Always treat a floating point number as an approxi-
mation. Although some numbers can be exactly
represented, you should never assume that the
number you have is exact.

2. Never compare floating point numbers for equality.
The “same” mathematical operations can pro-
duce slightly different floating point values, de-
pending on the operation ordering. The system
may be rounding values so that they look the
same, but may be different internally. Instead,
check the absolute difference to see if it is within
some acceptable range.

3. When summing a list, always start with the small-
est values. Summing smallest to largest will mini-
mize the total error accumulated.

4. Floating point numbers are unsuitable for financial
calculations or any other field where numbers
must be exact.

11.5 Decimal Floating Point

In order to avoid the problems associated with binary
floating point numbers, increasing computing power
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has allowed the introduction of decimal floating point
numbers. These numbers follow generally the same
structure as binary floating point numbers (sign bit,
exponent bits, significand), but instead of representing
the significand with standard binary, a form of binary
coded decimal is used instead.

In order to be able to represent a similar range of val-
ues, the size of the exponent and significand are some-
what flexible, and a smaller exponent allows for a few
more significand bits, which is needed to represent cer-
tain decimal digits. Using regular BCD would be very
wasteful: each BCD digit requires 4 bits. Note 24 = 16,
but only 10 unique digits exist. Thus, regular BCD
utilizes only 62.5% of the bit space. To overcome this
weakness, decimal floating point numbers are repre-
sented using densely packed decimal.

Densely packed decimal is a form of BCD where 10
bits represent three decimal digits. A quick calculation
shows that 210 = 1024, and three decimal digits have
1000 possibilities (000 thru 999), yielding a 97.7% space
utilization.

The advantage of decimal floating point is that any
number which can be exactly represented in decimal
with the specified number of digits (for example, 0.1)
can be exactly stored. The disadvantage of decimal
floating point is that significant additional computa-
tion is required to unpack and repack the densely
packed decimal and perform the operations. Thus,
decimal floating point can be expected to perform
slower than binary floating point.

On a current computer system, summing up the num-
ber 0.1 a million times was found to take about ten
times longer using the decimal data type as compared
to a binary floating point number. However, the sum
that was calculated using the binary floating point
numbers encountered a cumulative error, whereas the
decimal number did not.

The programming lan-
guage used to perform
this test did not natively
support 128-bit binary
floating point, or 64-bit or
less decimal floating point.
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Data Type Time Taken (ms) Sum Result
32-bit binary 43 1087937
64-bit binary 39 999999.999838975
128-bit decimal 412 1000000.0

Decimal floating point
numbers help reduce er-
rors substantially, but are
still subject to limitations.
In particular, any decimal
number which requires
more digits than the data
type can store will incur
rounding. The 128-bit
decimal data type can store
34 decimal digits.

The performance limitations of decimal floating point
are somewhat lessened by the inclusion of decimal
floating point operations directly into most modern
processors. Increasing processor speed has also al-
lowed these operations to be performed at a reasonable
rate, making decimal floating point the logical choice
for most computations.
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11.6 Exercises

Solutions to these exercises can be found in Appendix A.11 on page 309.

1. Problem: Convert 14.2510 into 16-bit bi-
nary floating point.

2. Problem: Convert −2.6710 into 16-bit bi-
nary floating point.

3. Problem: Convert
1

3
(base 10) into 16-bit

binary floating point.

4. Problem: Convert the 16-bit floating
point number 987616 into decimal.

5. Problem: Convert the 16-bit floating
point number 7BFF16 into decimal.

What, if anything, is special about this
value?

6. Problem: What is the smallest positive
integer which cannot be represented in
16-bit binary floating point?

7. Problem: In 16-bit binary floating point,
how many numbers can be represented
between 210 and 310, inclusively?

8. Problem: In 16-bit binary floating point,
how many numbers can be represented
between 010 and 110, inclusively?



Chapter 12
Unicode and ASCII

In addition to numbers, computers needs to represent
letters and words to provide output and receive input
from people. Historically, a variety of representations
have been used. Relevant standards for English speak-
ing countries are ASCII and Unicode.

12.1 ASCII

ASCII is a historical representation, derived from tele-
graph operations before digital computers were in use.
It remains interesting today because most modern en-
codings, such as Unicode, encompass at least a signifi-
cant portion of ASCII.

ASCII: short for American
Standard Code for Infor-
mation Interchange, a 7 or
8 bit encoding of English
letters, digits, punctuation,
and other symbols.

ASCII started life as a 7-bit encoding. The first 32 char-
acters (0016 thru 1F16) consist of “non-printing” charac-
ters or “control” characters. The control characters in-
cluded special typewriting operations and commands
to devices, such as printers. For example, character
0B16 represents a tab, and character 0816 represents a
backspace. For printers, character 0C16 represents a
form feed (new page) while character 0A16 represents a
line feed. These codes made sense in the days of rotary
printers, such as dot-matrix, but have little relation to
the page-at-a-time printers of the modern day.

The next 32 characters (2016 thru 3F16) consist of digits

123
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and punctuation. Capital letters begin at 4116, and low-
ercase letters begin at 6116. The following table shows
all characters in 7-bit ASCII. The shaded characters are
control characters. The octal digit on the left side iden-
tifies the most significant three bits, while the hexadec-
imal digit on top identifies the less significant four bits.
The blank character at 2016 is the space, as would ap-
pear when the space bar was pressed on the keyboard.

When referring to partic-
ular ASCII codes, it is
common to reference them
in two digit hexadecimal,
even though a maximum of
7 bits may be involved.

For example, if the value 100 10102 represents a charac-
ter in ASCII, that character is 001 10102 = 4A16 which
is the symbol J. If we wanted to represent the sym-
bol f using ASCII, it would be represented as 6616 =
111 01112. The last character in 7 bit ASCII (7F16) is a
control character for the delete key.

Seven bit ASCII was acceptable for simple English mes-
sages. However, as computer systems developed, the
need to represent other languages, such as Spanish, to
display special symbols such as £, and also the desire
to provide visual decoration increased. As a result, an
eight bit version of ASCII was developed. The 8-bit
encoding shares the first 128 symbols with the original
ASCII, and defines an additional 128 more in the range
of 8016 thru FF16.

Extended ASCII: any 8-bit
or more extension of ASCII
encoding.

Several variations of extended ASCII were proposed,
with conflicting characters chosen for the upper 128
range. Users had to be careful to select the proper en-
coding to indicate which version of extended ASCII
was in use, otherwise the extended characters were
appear as gibberish. In addition, it became clear that
128 characters was no where near enough to repre-
sent more pictographically complex languages such as
Mandarin or Japanese. The Internet, bringing comput-
ing and communication to the global scale, requiring a
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single character encoding which could represent all the
world’s messages. ASCII was not up to the job.

12.2 Unicode

Unicode was created as a way to represent characters
without arbitrary limits. For reasons of backwards
comparability, Unicode adopted the first 128 ASCII
symbols as its first 128 symbols. Unicode is divided
into two parts: code points (which are simply the pair-
ing of a symbol with a number), and an encoding
(which describes how to store the numbers).

Code Point: a number
which represents a specific
symbol in Unicode.

Character Encoding: a trans-
formation which describes
how to store a particular
code point in memory or
on disk.

Unicode code points are usually represents as U+0123
where the “U+” indicates that the number is a Unicode
code point, and the four digits are four hexadecimal
digits indicating the code point. For example, U+004A
is the symbol J. This is true because the first 128 Uni-
code code points match the 128 7-bit ASCII characters.
The four hexadecimal digits provide over 65,000 code
points; however, this is not a limit. Unicode has cur-
rently defined over 100,000 code points; the use of four
hexadecimal digits is merely convention. The symbol
J could also be represented as U+00004A or U+4A.

Complete charts of
all Unicode symbols
are available at http:
//www.unicode.org

The encoding and storage of Unicode code points,
however, was not obvious. Assume we wanted to store
U+004A (capital J) followed by U+004C (capital L). We
could store this as 4A 4C16. How would the reader
know that refers to U+004A followed by U+004C, and
not the single character U+4A4C?

In order to resolve this issue, a variety of Unicode en-
codings have been considered. Among the earliest was
UCS-2, which used 2 bytes (16 bits) for each character,
and supported only up to 65,536 code points. UCS-2
was troublesome for several reasons. A major problem
was that much of the data being transmitted and stored
was in English, and thus could be stored using only one
byte. Developers who used English exclusively com-
plained that UCS-2 wasted space; a UCS-2 string took
twice as many bytes as the equivalent ASCII string.

UCS-2: an early Unicode
encoding which repre-
sented each code point
with 16 bits.

http://www.unicode.org
http://www.unicode.org
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For example, in eight bit ASCII, the word “Hello” is
represented as 48 65 6C 6C 6F16, requiring a total five
bytes. In UCS-2, the same “Hello” is represented as
00 48 00 65 00 6C 00 6C 00 6F16, requiring ten bytes.
Although this example seems insignificant, when very
large amounts of text were being stored or processed,
the overhead was simply too much.

Another problem with UCS-2 became apparently as the
Unicode standard reached and exceeded 65,536 code
points. UCS-2 had no way to represent the high code
points. Like ASCII, UCS-2 was not flexible enough and
is considered obsolete.

A variety of other encodings were proposed, and used
to varying degrees. Today, however, almost all Uni-
code documents are encoded using UTF-8, which com-
bines the compactness of ASCII with the flexibility to
represent any code point. UTF-8 uses 8-bit bytes to rep-
resent data; if 7-bit ASCII is used with a leading bit of
0, UTF-8 is backwards compatible with ASCII. In addi-
tion, UTF-8 can represent over one million code points.
As a result of this compactness and flexibility, UTF-8 is
largely the standard Unicode encoding.

UTF-8: modern Unicode
encoding which is back-
wards compatible with 7
bit ASCII and can rep-
resent code points up to
U+10FFFF.

The number of bytes required for UTF-8 is one for rep-
resenting a code point up to 127, and increases up to
four for the highest code points. The table below shows
how to encode code points up to U+FFFF into UTF-8.
The letters in the patterns each match one bit, and show
how that bit from the code point would appear in the
UTF-8 encoding.

Unicode Code Point Code Point in Binary Code Point Pattern UTF-8 Encoding
U+0000 to U+007F 0000 0000 to 0abc defg 0abc defg

0111 1111
U+0080 to U+07FF 0000 1000 0000 to 0abc defg hijk 110a bcde 10fg hijk

0111 1111 1111
U+0800 to U+FFFF 0000 1000 0000 0000 to abcd efgh ijkl mnop 1110 abcd

1111 1111 1111 1111 10ef ghij 10kl mnop

Using UTF-8, “Hello” is encoded exactly the same as it
would be in ASCII.

� Example 12.1 • To encode the Euro sign (U+20AC),
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UTF-8 would use three bytes. The code point 20AC16 =
0010 0000 1010 11002. Applying this to the pat-
tern above, the first byte is 1110 00102, followed by
1000 00102. The last byte is 1010 11002. The Euro sign is
represented in UTF-8 as E2 82 AC16. �

The code point for the
Euro sign ends in AC16, as
does the UTF-8 encoding.
However, the “A” part is
coincidence. In general,
only the last four bits will
always match between a
code point and its UTF-8
encoding.

To read UTF-8 and convert it into Unicode code points,
the leftmost bits of the first byte must be considered.
If the leftmost bit is 0, then a single byte is consumed
and transformed directly into a code point. If the left-
most bits are 110, then two bytes are consumed and
transformed according to the second pattern to create
a code point in the U+0080 to U+07FF range. If the left-
most bits are 1110, then three bytes are consumed and
transformed according to the third pattern to create a
code point in the U+0800 to U+FFFF range. A simi-
lar pattern exists for the higher code points, using four
bytes. The leftmost bit pattern of 10 is used to indicate
this byte is part of a larger pattern.

� Example 12.2 • For example, to decode the UTF-
8 sequence C2 A216, first transform it into binary:
1100 0010 1010 00102. Starting with the first byte, match
the leftmost bits: 110 indicates that two bytes will be
used with the second pattern. The two bytes match
1100 0010 1010 00102. Taking the underlined parts
(which are the code point portions), and prepending
the 0s from the pattern, we find the Unicode code point
is 0000 1010 00102 = 0A216. The Unicode code point
U+00A2 refers to the “cent” sign. �

12.3 Display Issues
Font: a set of symbols
which represent various
code points.

In order to display any character on the screen, the
code point must be replaced with a symbol. The sym-
bol is looked up from a table; the table of symbols is
known as a font. Most computers include a variety of
fonts, such as serif, sans-serif, with bold and italic ver-
sions, along with more fanciful fonts. In the process of
creating a font, the artist creates a shape for each sym-
bol that the font can display. When dealing with ASCII,
only a small and fixed number of symbols need to be
created. However, the number of symbols in Unicode
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is large and growing.

Many fonts support only a very limited subset of Uni-
code. Some fonts, designed and indicated as Unicode
fonts, support a much larger base. However, few if
any fonts support all Unicode code points. Thus, even
though a particular symbol is listed in the Unicode
standard and has a representable code point, it may not
display correctly on the screen.

If an application is likely to include a variety of lan-
guages, care should be taken not just to support Uni-
code over ASCII, but to use or make available appro-
priate fonts which can render the various language
symbols involved.

Unicode defines a “replace-
ment character” U+FFFD
(the box) which can be used
to indicate that a symbol is
unavailable for display or
invalidly encoded.

Attempts to render a symbol not supported by a par-
ticular font usually appear as � or ?.

Another minor issue in display is that numbers, rep-
resented internally as unsigned or signed integers, or
floating point, must be converted into a sequence of
symbols to be displayed. This normally involves a con-
version through BCD, which can then be mapped from
one BCD block into one display symbol. Input of num-
bers works similarly, with a reverse process.
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12.4 Exercises

Solutions to these exercises can be found in Appendix A.12 on page 314.

1. Problem: Show how the phrase “Tall
tree” would appear in UTF-8.

2. Problem: Find the UTF-8 encoding for
the Unicode code point 239910.

3. Problem: Find the Unicode code point
associated with the UTF-8 encoding
D7 9116.

4. Problem: A certain document con-
tains 1,500 English letters, 350 standard
punctuation marks (including space),
and 50 symbols in Arabic. Arabic sym-
bols have Unicode code points from
U+0600 through U+06FF. Determine
how many bytes of disk space this doc-
ument will take to store using UCS-2
compared to UTF-8. (Assume no over-
head for formatting; only the encoded
characters will be stored).

5. Problem: The “Heart Sutra” is a famous
Buddhist text. It is very short, at only

260 Chinese symbols. Chinese sym-
bols have Unicode code points from
U+4E00 through U+9FCF. Determine
how many bytes of disk space this doc-
ument will take to store using UCS-2
compared to UTF-8. (Assume no over-
head for formatting; only the encoded
characters will be stored).

6. Problem: One English translation of the
“Heart Sutra” contains 1,357 English
symbols. Will this document (again,
assuming no overhead), encoded in
UTF-8, take more or less space than the
Chinese version, also encoded in UTF-
8?

7. Problem: The word “hello” in Chi-
nese is rendered as . In UTF-
8, these two symbols are encoded as
E4 BD A0 E5 A5 BD16. Find the Uni-
code code points for these symbols.

8. Problem: Translate the 8-bit Two’s Com-
plement number 1101 01012C into UTF-
8 for display.
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Chapter 13
Images and Color

An image is a visual representation of some content;
it may contain a variety of shapes and possibly col-
ors. Computer images are divided into two major
categories: raster (bitmap), and vector (line) graphics.
Most of the content that users traditionally think of as
“images” fall into the raster category.

Raster: image data stored as
a rectangular grid of colors.

Vector: image data stored as
a collection of shapes.

Computer images are also categorized by the type of
color they offer. The simplest images may support only
black and white, although more commonly many col-
ors are supported. Encoding of transparency and/or
translucency is also a factor.

Due to the large amount of data required to repre-
sent an image, compression techniques are often ap-
plied. Two main forms of image compression are
loseless (which always allow the exact original image
to be reconstructed) and lossy (which can cause arti-
facts, blurriness, or discoloration in images, but allow
a much smaller file size). Loseless compression is rec-
ommended for images that consist of text and sharp
edges (like logos or rasterized vector images). Lossy
compression is standard for photographs.

Images which are not strictly black and white must
have some way of describing what colors are being
used. A variety of color models are employed to this
end. A color model describes what fundamental prop-
erties are used to define colors, and how they mix. A

131
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color model is either additive or subtractive. Color
monitors and projectors work by emitting light; by de-
fault, the screen is dark. The device emits light which
brightens the screen. Such a device works using an ad-
ditive color model: black is default, and colors can be
added and mixed to reach white, which is formed by
combining all colors at maximum brightness.

Color Model: a technique for
representing colors using a
collection of numeric val-
ues.

Printed documents, on the other hand, work the oppo-
site way. A piece of paper generally starts out all white
by default, and inks or toners in various shades can be
added to darken it. If all colors are mixed at their max-
imum intensity, black is formed.

In any color model, the intensity of each color is usu-
ally specified with a number; sometimes floating point
numbers 0 through 1 (with 0 being the least intense and
1 being with most intense) are used. More commonly,
8-bit unsigned integers are used, with 0 being the least
intense and 255 being the most intense. These values
are often written in hexadecimal (0016 through FF16).

13.1 RGB and HSV

The most common additive color model is RGB, short
for Red-Green-Blue. This color model matches the
physical construction of most monitors and projectors,
which contain a tiny trio of red, green, and blue lights
for each pixel which is displayed. On some displays, if
you look close enough, you can even see the individual
red, green, and blue subpixels. In this additive model,
red and green mix to form yellow; red and blue mix to
form purple; and green and blue mix to form cyan (a
light sea blue). If all three are mixed equally, a shade of
gray is formed, with white being created by maximum
red, green, and blue.

Pixel: the smallest compo-
nent of an image that a de-
vice displays or prints.

Digital cameras usually also use red, green, and blue
sensors. In some cases, sensors for each type of color
are packed together. In other cases, one general sen-
sor is used with color filters, and a series of images
are captured in quick succession using the different fil-
ters. An example of this effect can be noticed with
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satellite imagery. In this case, a satellite using red,
green, and blue filters (along with a general unfiltered
grayscale capture) has taken a picture using four quick
exposures. An airplane passing through the field of
view was moving fast enough, relative to the exposure
speed, to appear in different places in each exposure.

The RGB color model can be visualized as a Venn dia-
gram of the three primary colors. On the outside of the
circles, when no color is present, the default is black. In
the very middle, when all colors are present, the result
is white.

If all three components of
an RGB color are the same,
or similar, the color is a
shade of gray.

RGB colors are often written as a tuple of hexadeci-
mal values, starting with a #. For example, the color
specified by #1278DE has a red component of 1216,
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a green component of 7816, and a blue component of
DE16. This color has mostly blue, with some green and
a small amount of red; it appears as a medium blue-
green.

Several common colors, and their associated RGB
codes, are shown below.

Black #000000 Gray #C0C0C0
Red #FF0000 Green #00FF00
Blue #0000FF Yellow #FFFF00
Cyan #00FFFF Magenta #FF00FF
White #FFFFFF Orange #FF9900

An alternative color model is HSV, short for Hue-
Saturation-Value. HSV defines a color with three num-
bers, as RGB does, but interprets them very differently.
The first number is hue, which defines where on the
color spectrum the color falls. The hue maps to a color
wheel, and so the range of values for hue is generally
0 through 360 (the degrees around a circle). Red falls
at the beginning and end (because hue represents a cir-
cle, the beginning and end are actually the same place).
Green is centered around 120 degrees, and blue is cen-
tered around 240 degrees. Intermediate colors, such as
yellow, cyan, or magenta, fall between the centers of
the primary colors.

The saturation component relates “how gray” the color
is. A saturation of zero gives gray no matter what
hue is selected. A medium saturation yields a washed
out color. A full saturation (usually on the range of 0
through 100) gives a vivid (but not necessarily bright)
color.

The value (sometimes represented as lightness), indi-
cates the intensity of the color. A minimum value
will yield black for any combination of saturation and
hue; a medium value yields a dark color, and a high
value yields a bright color. Notice the distinction be-
tween value (which controls brightness) and saturation
(which controls vividness). A color with a high value
but low saturation will be nearly white, while a color
with low value (regardless of saturation) will be nearly
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black. A color with both high value and high satura-
tion will be vivid and bright in the selected hue.

The saturation and value are often represented in terms
of percentage; with 0% being the lowest and 100% be-
ing maximum.

The HSV model, and its related models, are useful
for artistic color selection and also for computational
analysis of colors, such as computer vision and optical
recognition applications.

13.2 HSV to RGB

RGB and HSV are directly convertible, and many color
applications will let the user manipulate colors in ei-
ther or both systems. The basis of this relationship is
the division of hue into six categories. These categories
describe the “ordering” of the red, green, and blue by
intensity. In each category, the primary color is at a
fixed, high intensity. The secondary color is either in-
creasing or decreasing as the hue increases.

Recall that hue is repre-
sented as a circle, with 360
degrees.

Hue Range Dominant Secondary Secondary Color Is
0 - 60 Red Green Increasing
60 - 120 Green Red Decreasing
120 - 180 Green Blue Increasing
180 - 240 Blue Green Decreasing
240 - 300 Blue Red Increasing
300 - 360 Red Blue Decreasing

For example, consider the RGB color #0571AF. This
color is primarily blue (AF16), with a medium amount
of green (7116), and a small amount of red. Therefore,
the hue for this color would fall in the range of 180 to
240. Likewise, if a color were known to fall in the hue
range of 60 to 120, then its RGB components must be
ordered G ≥ R ≥ B.

To convert from HSV to RGB, consider H to be the
hue in the range 0 to 360, S to be the saturation in the
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range 0 through 1, and V to be the value in the range
0 through 1. The resulting RGB values will also be in
the range 0 through 1. The dominant RGB component,
identified by the hue category table, will be the same
as V .

The “category” conversion
process maps the circular
hue into a hexagon, caus-
ing a slight deformation of
the color space. A com-
pletely correct translation
would apply trigonometric
formulas. The error, how-
ever, is not much more than
1 degree.

Next, we must calculate how far (as a percentage)
through the current hue category the color is. This can

be found by calculating F =
H

60
−

⌊
H

60

⌋
.

The secondary RGB component, identified by the hue
category table, depends on how the secondary color is
changing within that category. If the secondary color
is increasing, then the secondary RGB component is
defined as V − V S + V SF . If the secondary color is
decreasing, then the secondary RGB component is de-
fined as V − V SF .

If S = 0, then (R,G,B) =
(V, V, V )

Finally, the remaining RGB component is defined as
V − V S.

The formulas for the com-
ponents are often written
in a factored form, such as
V (1 − S(1 − F )) instead of
V − V S + V SF .

� Example 13.1 • For example, given a color with
hue of 57 degrees, a saturation of 21%, and a value
of 34%, what is the RGB representation? First, we
identify that this color has a dominant component of
red, a secondary component of green, and that the sec-
ondary color is increasing. To begin with, R = 0.34
(the value). To compute the other two, we first find

F =
57

60
−

⌊
57

60

⌋
= 0.95 − ⌊0.95⌋ = 0.95 − 0 = 0.95.

The secondary component, green, is found with G =
0.34−0.34∗0.21+0.34∗0.21∗0.95 = 0.34−0.071+0.068 =
0.337. The final component, blue, is found with B =
0.34− 0.34 ∗ 0.21 = 0.34− 0.071 = 0.269. With ranges of
0 through 1, the RGB for this color is (0.34, 0.337, 0.269).

These can be converted into hexadecimal tuples by
multiplying each component by 255 and rounding. In
the 8-bit range, the red value is 8710 = 5716, the green
value is 8610 = 5616, and the blue value is 6910 = 4516.
The hex tuple would be written as #575645. �
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13.3 RGB to HSV

Conversion from RGB to HSV follows the opposite
process. Define R, G, and B to be in range of 0 through
1. The resulting S and V values will be 0 through 1, and
H will be 0 through 360. Identify the dominant RGB
component (simply based on the largest number of the
three). Define the value as V = max(R,G,B) (that is,
the value is equal to the dominant RGB component).

In the event of a perfect
shade of gray, where each
value R, G, and B are
equal, then D = 0.

Define an intermediate value, D, to be the difference
between the largest and smallest RGB components. In
other words D = V −min(R,G,B). With this interme-

diate value, the saturation can be defined as S =
D

V
.

If V = 0, then let S = 0 and
H = 0 as well.

Finally, the hue can be determined based on the dom-
inant and secondary RGB component. Depending on
the secondary component, the value of hue may be
negative; to return it to the 0 to 360 range, add 360 to
the negative value.

Dominant RGB Component Formula for Hue

Red H = 60 ∗ G−B

D

Green H = 60 ∗
(
2 +

B −R

D

)
Blue H = 60 ∗

(
4 +

R−G

D

)

� Example 13.2 • For example, given the color
#23375F, what is the HSV representation? Translate
these values into the 0 through 1 range. For red, 2316 =
3510; for green 3716 = 5510, and for blue 5F16 = 9510.
To find the translated range, divide each decimal value
by the 255. In the translated range (rounded to three
decimal places), the tuple is (0.137, 0.216, 0.373).

The dominant component becomes the value, so V =
0.373. Next, find D = V − min(R,G,B) = 0.373 −
0.137 = 0.236. Calculate the saturation S =

D

V
=

0.236

0.373
= 0.633.

The value for hue in partic-
ular is impacted by the re-
peated rounding of results.
When this algorithm is exe-
cuted by computer, higher
precision is used and the
rounding errors are not sig-
nificant.



138 CHAPTER 13 | Images and Color

Finally, determine the hue. The dominant RGB com-
ponent is blue, so apply the formula H = 60 ∗(
4 +

R−G

D

)
= 60 ∗

(
4 +

0.127− 0.216

0.236

)
= 60 ∗ (4 +

−0.377) = 217. There, this color would be represented
with a hue of 217 degrees, 63% saturation, and 37%
value. �

13.4 CMYK

CMYK is a subtractive color model used primarily for
printing. Unlike RGB, where the absence of color re-
sults in black, and all colors result in white; in CMYK,
the absence of any color (ink) results in a white page,
and the presence of all colors forms black. Strictly
speaking, C (cyan), M (magenta), and Y (yellow) alone
are enough to form any color, however, to save sub-
stantial cost, black ink is used and then colorized with
the minimum amount of colored ink necessary.

No direct conversion between CMYK and RGB exists
without defining the precise tone relationship of the
colors in use. Approximations exist, and most publish-
ing software will allow a printer to define the transfor-
mation so that an image is colorized on screen and on
paper as similarly as possible.

13.5 Raster Images

A raster image is constructed of a rectangular grid of
pixels. Each pixel represents a single color, the range
of which depends on the capability of the image. Color
range (often called color depth) is normally expressed
in terms of bits per pixel. The number of bits per pixel
expresses how many colors can be represented by that
pixel. Exactly what color each bit sequence refers to
depends on the particular image encoding technique.
Common values for bits per pixel are 1 (black and
white only), 8 (256 colors), 24, and 32 bits.

Color Depth: bits per pixel
in an image.
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Due to the raster image’s internal representation as a
grid of pixels, raster images suffer when zoomed. To
facilitate zooming, many images are produced with
a very large number of pixels, and then zoomed out
for default display. In addition, some smoothing tech-
niques exist to make pixel edges blend. In all cases,
however, zooming on a raster image eventually leads
to blurriness and a loss of detail.

In general, an uncom-
pressed image of w × h
pixels and a color depth
of n bits will require about

3 +
nwh

8
bytes of storage.

The first three bytes store
the width, height, and
color depth.

The raster image below and left is defined by 32 pixels
horizontally and 26 pixels vertically, for a total of 832
pixels. In the sequence below, this image is zoomed
repeatedly to reveal the lack of detail.

1x 2x

4x 8x

To store an image, the image height and width (in num-
ber of pixels), and the color depth (bits per pixel) must
be stored along with the image. If the bits per pixel
is not divisible by 8, then the pixels may or may not
be packed. Unpacked pixels are expanded to meet the
byte boundary; this takes more space but is easier for
programs to process.

Images with a color depth of 1 bit are usually repre-
sented with the two colors of black and white; although
in theory any two colors could be used. Images of this
type are used in black and white printing, and for cer-
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tain display techniques, such as image masking. Stor-
age on disk and in memory is generally done at the
byte (8 bit) level. Unpacked bitmaps will use 0016 for
black and 0116 for white, but this representation is very
inefficient. Packed bitmaps will represent each pixel
with one bit, 8 pixels per byte.

Packed 1-bit raster images

will require about 2 +
wh

8
bytes of storage.

Images with a color depth of 8 bits fall into one of two
categories: grayscale or color. In either case, 8 bits
(1 byte) of data represents one pixel. Grayscale im-
ages support 256 shades of gray, from 0016 being black
and FF16 being white. A basic grayscale image can be
generated from a color image by considering only the
value of the color image represented in HSV. However,
this translation does not consider the differences of hue
in human vision, and so does not have the best possible
dynamic expressiveness.

Palette: a selection of colors
available for use in an im-
age.

GIF: Graphics Interchange
Format, an 8-bit loseless
compressed image format
popular for small anima-
tions.

Eight bit color images often use a palette to indicate the
value of each color. For example, in GIF images, the 256
color palette is first defined with 24 bit RGB per color.
These colors are then referenced in the pixel data of
the image. The use of a palette allows image software
to optimize the number of colors available where the
most color expressiveness is needed, at the expensive
of unused colors. For example, a picture of an ocean
might have a palette with many blues and greens, and
few reds. GIF images also allow one of the colors in
the palette to be marked “transparent”, which indicates
that no pixel should be drawn at locations with that
color. Transparency enables the effect that makes some
images appear to be non-rectangular.

13.6 Alpha Blending

Most images are stored with either 24 or 32 bits of color
depth. The 24 bit color depth associates an RGB values
(8 bits for each of red, green, and blue) with each pixel.
Extending this to 32 bits usually does not change the
number of bits associated with RGB, but adds a forth
channel for translucency, called the alpha channel. Un-
like the simple transparency of GIF, an alpha channel
allows for varying translucency, so that portions of an
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image may partially show what is behind them. Alpha: a component of
a color indicating how
translucent it is.In order to determine what color pixel to actually dis-

play, the computer must blend the translucent image
with the background. For these formulas, the alpha
will be assumed to be in range of 0 through 1.

Alpha Blending: mixing a
translucent color over a
background to determine
the actual color to display
at that location.

To blend two colors with alpha channels, let the top
color be defined as (R0, G0, B0, A0) and the bottom
color be defined as (R1, G1, B1, A1). In that case,
first define the alpha channel for the new color as
A2 = A0 + (1 − A0)A1. Next, the components of
the new color (R2, G2, B2) can be defined as R2 =
A0R0 + (1− A0)(A1R1)

A2

, and likewise for G2 and B2.

In the case that the back-
ground color (R1, G1, B1)
has no alpha channel, a
translucent foreground
color (R0, G0, B0, A0) can
be blended with it with
the simplified formula
R2 = A0R0 + (1 − A0)R1,
and likewise for G2 and B2.

Consider first an image of a cloud, with a blue back-
ground (left), and an image of the Sun, with a white
background (right). Neither of these images has trans-
parency. On the second row (left), we replace the blue
background of the clouds with transparency, and over-
lay the cloud image on top of the sun image. Both
images are still rectangular, and have the same shape;
however, the transparent portions of the cloud image
admit the pixels from the sun image behind it. Finally
(bottom right), we apply an alpha channel to the re-
maining non-transparent portion of cloud. The alpha
channel is set to 50%, and the alpha blending effect is
clearly seen.

Translucent colors may be
represented with ARGB or
RGBA or some other ar-
rangement of values; the
sequence of letters indi-
cates the order in the hex-
adecimal code in which
each component appears.
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Colors with an alpha channel may be represented as
ARGB, which adds 2 hexadecimal digits to the RGB
color code, indicating the alpha value. An alpha value
of 0016 means fully transparent (0%), and an alpha
value of FF16 means fully opaque (100%). Thus, the
color #80FFFF00 is a half-transparent yellow.

13.7 Vector Images

Vector images are constructed using a collection of
shape primitives. Each primitive, such as a rectangle
or circle, can be assigned styles and drawn at a particu-
lar position and size. Vector images are constructed us-
ing a language which describes to the computer what
shapes should appear where. The computer can then
render these shapes into a raster image of the appro-
priate size. If the user zooms in on a vector image,
the computer re-renders it at the new size, creating a
smooth appearance.

SVG is an example of a
general syntax called XML,
usually stored using UTF-
8.

One language used to describe vector images is Scal-
able Vector Graphics (SVG). SVG is stored on disk as a
sequence of characters, and these characters are inter-
preted to instruct the computer to draw some shape.
The SVG file below, for example, describes a rounded
rectangle with a yellow filling and black edge.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">

<svg width="100%" height="100%" version="1.1"
xmlns="http://www.w3.org/2000/svg">

<rect x="20" y="20" rx="20" ry="20" width="250" height="100"
style="fill:yellow;stroke:black;stroke-width:5;opacity:0.5"/>

</svg>

The table below shows the result of zooming in on
the upper-left corner of this rectangle. In the vector
version, the computer re-renders the rectangle at each
zoom, resulting in no loss of detail. On the other hand,
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if the original rectangle is first converted into a raster
image 256 pixels wide and 110 pixels high, and then
the same zoom sequence is undertaken, pixelation ap-
pears quickly.

Vector Raster

1x

2x

4x

8x
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13.8 Exercises

Solutions to these exercises can be found in Appendix A.13 on page 317.

1. Problem: Describe the colors repre-
sented by the following RGB codes.

(a) #4682B4

(b) #C71585

(c) #A52A29

(d) #807E82

(e) #98FB99

2. Problem: Describe the colors repre-
sented by the following HSV values.

(a) 260 degrees, 35% saturation, 94%
value

(b) 134 degrees, 65% saturation, 41%
value

(c) 46 degrees, 10% saturation, 95%
value

(d) 321 degrees, 10% saturation, 9%
value

(e) 321 degrees, 90% saturation, 9%
value

3. Problem: Convert the HSV color with
hue of 200 degrees, a saturation of 50%,
and a value of 85% to RGB.

4. Problem: Convert the RGB color
#274F07 into HSV.

5. Problem: A large uncompressed, un-
packed black and white (1 bit) raster
image requires about 100,000 bytes.
If the image is instead stored as un-
compressed, packed black and white (1
bit), about how much space will be re-
quired?

6. Problem: An uncompressed 24-bit color
raster image requires about 200,000
bytes. If an 8-bit alpha channel is
added to the image, about how much
space will the new image require?

7. Problem: An opaque background of
color #3409AB is overlaid with the
translucent ARGB color #0F4A7A99.
What is the resulting RGB display
color?

8. Problem: An ARGB color #B1A00591
is placed on top of another ARGB color
#55667788. The two colors are alpha
blended; what is the resulting ARGB
color?



Chapter 14
Bitwise Operations and
Masking

The Boolean operators, such as AND, OR, and NOT,
can be extended beyond functioning on single bits to
work on bit sequences. When Boolean operators are
applied to bit sequences, they are called bitwise oper-
ators. The input and output values are usually repre-
sented as unsigned integers. Bitwise operations have
many applications in systems programming, cryptog-
raphy, and networking.

A bitwise operation is performed by aligning two bi-
nary numbers of equal length and for each position
performing the operation to produce a result number.
Commonly & is used for AND, | is used for OR, ∼ is
used for NOT (also called complement), and ⊕ or ˆ is
used for exclusive-OR. In the following example, the
symbol & refers to the bitwise operator AND. Note that
the AND operation is applied to each column (posi-
tion) independently; there is no carrying or borrowing
that ever occurs in bitwise operations. Each position is
independent of the others.

By showing all possible in-
puts, as in this example,
a bitwise operation can act
like a truth table.

00112
& 10102

00102

Although bitwise operations always occur at the bi-
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nary level, there is no reason the inputs must be written
that way. The previous example might also be written
as 310 & 1010 = 210.

The NOT operator inverts all bits in a number. The
number of bits available must be known.

� Example 14.1 • For example (six bits) ∼1010012 =
0101102. The same operation in other bases assumes
a conversion to and from binary first. For example,
(eight bits) ∼FA16 = 0516, and (seven bits) ∼12310 = 410.
If eight bits are used, then ∼12310 = 13210. The rea-
son for the distinction is that in seven bits, 12310 =
111 10112, and ∼111 10112 = 000 01002 = 410. In
eight bits, 12310 = 0111 10112, and ∼0111 10112 =
1000 01002 = 13210. �

The toggling property of
exclusive-OR gives it two
interesting identities: a ⊕
a = 0, and from that it fol-
lows that a⊕ b⊕ b = a.

The OR operator functions in a similar manner to the
AND operator, except that the resulting position will
have a 1 if either input position had a 1. For example,
110 01012 | 010 10102 = 110 11112. The resulting value
of an exclusive-OR is a 1 in each position where either
but not both of the source values had a 1. For example
11012 ⊕ 01012 = 10002.

Bitwise operations permit compact efficient utilization
of individual bits in a number, and tend to be extremely
fast for the processor to perform (due to the lack of any
borrowing, carrying, or other special cases). Thus, they
are most appropriate when space and time are at a pre-
mium, such as embedded devices or high performance
computing.

14.1 Flags

In many situations, a substantial number of Boolean
parameters may be available to some influence how
a computation is performed. These parameters can
describe options, settings, or any other configuration
data. Rather than store each Boolean value is a sepa-
rate area, they can combined using flags. To use a flag,
a single integer number is used as a storage space for
many Boolean values (up to the number of bits in the
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integer). Flag: a bit which indicates
the presence or absence of a
particular condition or set-
ting.

� Example 14.2 • Imagine we want to store which
days of the week (Sunday through Saturday) a per-
son is available to work. A variety of inefficient stor-
age mechanisms are possible, such as a variable length
string containing a letter for each available day, or a
fixed length 7 byte string with a series of Y/N values,
one for each day. However, a complete accounting of
available or unavailable for each day can be stored in
1 byte per person. Instead of thinking of the byte (8
bits) as an integer number, consider each bit as a yes or
no setting for a particular value, in this case one day.
Only seven days exist, so only seven bits are needed,
although most computers allocate bits in a minimum
of 8 bit blocks.

Each value will be assigned one position in the number.
In this case, we’ll let Sunday be the leftmost bit of 7 and
Saturday be the rightmost bit. This gives the values:

A series of flags will all be
exact powers of two, so that
each flag represents a sin-
gle bit position.

Day Value in Binary Value in Hex
Sunday 100 00002 4016
Monday 010 00002 2016
Tuesday 001 00002 1016
Wednesday 000 10002 816
Thursday 000 01002 416
Friday 000 00102 216
Saturday 000 00012 116

The value for a certain
combination of flags can be
found by adding, or by bit-
wise OR’ing, all the desired
flag values.

If a certain person is available Monday, Wednesday,
and Saturday, their value would be 010 10012 = 2916.
Note that the 1 bits correspond to each available day.
A person who was not available on any day would
have a value of 000 00002 = 016; likewise, a person
available every day of the week would have the value
111 11112 = 7F16. �

If unsigned numbers are
known to be in use, the
flag check can be done
slightly faster by checking
for n & f > 0, as most pro-
cessors have a quick, built-
in check for zero equality.

Bitwise operations permit efficient checking of individ-
ual flag values in a number, as well as setting, clear-
ing, and toggling of flag values. To check if a partic-
ular flag with value f is set in a number n, determine
if n & f = f . To set a particular flag with value f in a
number n, regardless of whether or not it is already set,
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update n = n | f . To clear a particular flag with value f
in a number n, regardless of whether or not it is already
set, update n = n & ∼f . Note that two operations are
involved in this step.

� Example 14.3 • For example, using the previous ex-
ample, is a person with value 3316 available on Tues-
day? The flag value for Tuesday is 001 00002; trans-
lating 3316 into binary gives 011 00112. We find that
011 00112 & 001 00002 = 001 00002. This value is greater
than zero, so the person is available on Tuesday.

Taking the person from the previous example, we want
to show that they are available Tuesday and Wednes-
day (in addition to any days they are already avail-
able). The original value is 011 00112, Tuesday is rep-
resented as 001 00002 and Wednesday as 000 10002.
Note that 011 00112 | 001 0000 = 001 00112, no change,
because the Tuesday flag was already set. Next,
011 00112 | 000 1000 = 011 10112, which now shows
the Wednesday flag being set.

Many bitwise operations
depend on the Boolean al-
gebra rules. For example,
the clearing of a flag uses
the rules x ∧ T = x as well
as x∧F = F to keep all val-
ues except the one to clear.

Now imagine we have been informed that the per-
son is no longer available on Tuesday. Their current
value is 011 10112 and Tuesday has the flag value
001 00002. If we want to clear this flag, we can ap-
ply 011 10112 & ∼001 00002 = 011 10012 & 110 11112 =
010 10012. The NOT operator first inverts the flag, and
the AND operator ensures the lone zero bit clears out
that position, while the other one bits leave the other
positions untouched. �

A particular flag f can be toggled in a number n a sin-
gle step using exclusive-OR; update n = n⊕f to toggle
the flag. This step works because the zeros in the flag,
when used with exclusive-OR, will leave the original
bits alone; the 1 bit in the flag position will cause the
input bit to be toggled.

Any list of Boolean val-
ues can potentially be con-
densed using bitwise oper-
ations as long as the size
of the list is fixed and not
greater than the number of
bits in your programming
language’s integer.

Anytime a series of options is represented using pow-
ers of two, you can assume bitwise flags are being
used. Flag operations can are summarized in this ta-
ble, where f is the flag value (a power of two), and n is
the number containing the flags.
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Operation Technique
Set a Flag Update n = n | f
Clear a Flag Update n = n & ∼f
Toggle a Flag Update n = n⊕ f
Check a Flag Determine if n & f = f

14.2 Bit Masks

A bit mask is a technique to describe which portions of
a number should be considered in some operation. In
particular, masks are often used to define a range of in-
tegers, especially in networking. In the IPv4 network-
ing protocol, each computer has a 32-bit identifier (an
IP address). To describe which computers are directly
on the local network, a subnet mask is used. IPv4 ad-
dresses are written using four blocks, where each block
is a base-10 integer 0 through 255. Thus, the IP address
1.2.3.255 corresponds to number 010203FF16.

Bit Mask: a series of bits
that are manipulated using
bitwise operations, usually
to define portions of num-
ber as usable or not.

Bitmasks are often abbrevi-
ated using slash notation,
where /n means n 1s fol-
lowed by the rest being
0s. For example, the 32-bit
mask /20 is FFFFF00016
(20 1s followed by 12 0s).

� Example 14.4 • Consider a particular computer
which has an IP address of 10.50.1.170 (0A3201AA16)
and a netmask of 255.255.255.224 (FFFFFFE016). The
zeros in the netmask indicate bits that may be used to
number computers on the local network. Thus, this
network can have at most
∼FFFFFFE016 =
0000001F16 =
3110 different computers. The IP address range starts at
0A3201AA16 & FFFFFFE016 =
0A3201A016 (10.50.1.160) and continues up through
0A3201AA16 | ∼FFFFFFE016 =
0A3201AA16 | 0000001F16 =
0A3201BF16 (10.50.1.191). �

Note that the minimum value of a bitmask is found us-
ing the AND operator (essentially, to clear all settable
bits) and the maximum value of a bitmask is found us-
ing OR and NOT (essentially, to set all settable bits).

A similar technique is used for firewalls to limit ac-
cess to network resources to only approved portions of
the network. For example, a corporate payroll server
might be limited to only be accessible from comput-
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ers in the accounting department. An access control
system can use a bitmask to screen incoming requests
based on the IP address of the requesting computer to
quickly see if it falls into the range of allowed comput-
ers.

Very easy and fast operations are required to enable
hardware, such as firewalls and routers, to handle large
amounts of network traffic. Bitwise operations were
chosen to allow network zones to be defined and still
be processed extremely fast, ensuring high network
throughput.

IPv6 networks (composed of 128 bit addresses com-
pared to 32 bits for IPv4 networks) use a prefix length
instead of a netmask, however, the mechanism works
essentially the same way.

14.3 Image Masks

To create the appearance of transparency in images
while avoiding the computational expense of alpha
blending, image masks may be used. Image masks pro-
vide an extremely fast technique for simulating trans-
parency in raster images.

The general technique involves the source image and a
1-bit “cut out” which defines the transparent regions.
The portions which are to remain background have a
value of 1, and the portions which are to become the
new image have a value of 0. The portions of the
new image which should be transparent also are rep-
resented with the value 0.

The technique of layering
raster images using bitwise
operations is often called a
“bit blit”, short for bit block
transfer.

The cut out is applied against the background using the
AND operator (so that portions that will contain the
new image become all 0s, and other portions remain
untouched), and then the new image is applied using
the OR operator.

� Example 14.5 • Imagine we want to render some
characters onto a background. The characters could be
defined, along with a mask, to allow quick transparent
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rendering. Consider the three characters below (left)
and their associated image masks (right).

The characters may be rendered onto a background by
first applying the image mask with the AND operator,
and then applying the character image with the OR op-
erator.

�

An even faster approach, although one that causes
loss of color continuity, is simply to exclusive-OR the
background image with the foreground image, and
then remove the foreground image later with another
exclusive-OR. This technique can be used for mouse
cursors and other transient images that need only
draw user attention to certain area of the screen. The
exclusive-OR technique is also useful if an original
copy of the background is unavailable. In the previous
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technique, a portion of the background is cut out and
removed; using exclusive-OR, the original background
can be restored.

� Example 14.6 • For example, if a background pixel
has the color #12AB90 (greenish-blue) and the cur-
sor pixel with color #888888 (gray) is applied with
an exclusive-OR, then the new pixel will be ren-
dered with color #9A2318 (red; very distinct from the
original color). To remove the cursor, simply apply
#9A2318 exclusive-OR with the cursor #888888 and
the original pixel color will be restored. As the cur-
sor moves across the background, its color composition
will change. �

The sequence belows show a cursor placed and then
removed using exclusive-OR.

14.4 XOR Cipher

Bitwise operations play a fundamental role in cryp-
tography as well. The exclusive-OR cipher, by itself,
is merely a curiosity, but it appears as a core compo-
nent of almost all modern encryption techniques. The
exclusive-OR cipher is an example of a symmetric ci-
pher, meaning that the same key is used to perform
both encryption and decryption.
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To apply the exclusive-OR cipher, a plaintext and a
passcode byte sequence are both required. The plain-
text represents the content (which need not represent
text) to encrypt, and the passcode is the byte sequence
to encrypt and later decrypt the content with.

The concept of XOR cipher
works precisely the same
as the XOR sprite overlay.

Each byte of the plaintext is exclusive-OR’d with a
corresponding byte from the passcode. Normally, the
passcode is substantially shorter than the plaintext, so
the passcode is repeated as many times as needed. The
result of the exclusive-OR is the ciphertext, the en-
crypted content. This content can be decrypted by ap-
plying the same exclusive-OR again with the passcode.

The plaintext could repre-
sent an image, text in some
encoding (such as UTF-8),
music, or any other con-
tent.

� Example 14.7 • For example, imagine we want to
encrypt the byte sequence 5AB207D2EE16 using the
passcode 1A2B16. Align each byte of the plaintext with
the corresponding passcode byte, repeating the pass-
code as needed to provide for the entire length.

Exclusive-OR, like all bit-
wise operations, can be ap-
plied equally well to any
length of bits; it is con-
venient for our purposes
to divide the streams into
bytes, but this does not af-
fect the result.5A B2 07 D2 EE

⊕ 1A 2B 1A 2B 1A

For each pair of plaintext and passcode bytes, con-
vert them into binary and apply the bitwise operation
exclusive-OR to each bit.

5A16 = 010110102
1A16 = 000110102

010000002 = 4016

Likewise for all remaining sequence. The encrypted
content is 40991DF9F416. To decrypt this content,
apply the same procedure with the same passcode.
Again, the first byte is illustrated here, and the rest fol-
low likewise.

4016 = 010000002
1A16 = 000110102

010110102 = 5A16

�
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14.5 Exercises

Solutions to these exercises can be found in Appendix A.14 on page 322.

1. Problem: Perform the following bitwise
operations on 8 bit numbers:

(a) 5A16 & 9916

(b) 3B16 | 2716
(c) 4F16 ⊕ 3116

(d) ∼5F16

An online webservice for retrieving aerial
photography indicates what kind of im-
ages are available in a certain area using
flags. The documentation states that follow-
ing types exist:

Image Type Flag Value (base 10)
B & W Photo 1
Topographic Map 2
Shaded Relief 4
Color Photo 8

2. Problem: For each of the following, find
the appropriate flag value.

(a) The area has shaded relief and
color photo available.

(b) The area has black and white
photo, as well as color photo,
available.

(c) The area has all four types of im-
agery available.

(d) No imagery is available for the
area.

3. Problem: Determine which types of im-
agery are available given the following
values.

(a) 1110

(b) 118

(c) F16

(d) 01102

4. Problem: How many devices can par-
ticipate in an IPv4 network with a net-
mask of 255.255.255.240? (Excluding
the use of any gateways, etc.)

5. Problem: If a device has an IPv4 ad-
dress of 10.5.77.203, and a netmask of
255.255.255.252, what is the range of
IPv4 addresses it can directly commu-
nicate with?

6. Problem: A pixel of color #45BC09
is exclusive-OR’d with a background
pixel of color #045A9F. What is the re-
sulting color?

7. Problem: Using the XOR cipher, en-
crypt the UTF-8 phrase “Hello World”
with the passcode “aBc”.

8. Problem: Using the XOR cipher, de-
crypt the content represented by
3A100E0F10091D16 using the UTF-8
passcode “xyz” and show the output
using UTF-8.



Chapter 15
Error Correcting Codes

Connections between computing devices transfer more
data today than any time in history. The rise of mobile
devices with Internet access means that large quanti-
ties of data are being transmitted at faster and faster
speeds over narrower channels with increasing proba-
bility of interference. Whether wired or wireless, phys-
ical anomalies can interfere with data transmission and
introduce errors.

Error Correcting Code: a
technique for encoding a
sequence of bits such that
certain kinds of transmis-
sion errors can be detected,
and in some cases, auto-
matically corrected.

Ultimately, all data is transmitted as bits. An error oc-
curs when a bit is received as the opposite value from
what was sent; for example, if I send you a 1 and you
receive a 0, or vice versa. A transmission medium
which is subject to errors is known as a noisy chan-
nel. In order to preserve data intact across a possi-
bly noisy channel, computer scientists have developed
many techniques for detecting and correcting errors.

If one or more errors is detected with the benefit of a
code, the sender can be asked to retransmit the block
until no errors occur. This process interrupts the nor-
mal transmission and slows down the throughput of
the channel. Some codes allow the receiver to correct
one or more errors without asking the sender to re-
transmit. These codes allow the sender to maintain a
higher throughput. In all cases, every error detecting
or correcting code has a limit; errors beyond the limit
may slip past undetected. In order to safeguard data
transmissions, multiple methods of error detection are
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applied at different levels to make an undetected error
very unlikely.

Many error correcting codes assume that errors occur
randomly and without bias (that is, the error is just as
likely to flip a 0 to 1 as it is to flip a 1 to a 0). How-
ever, not all physical noisy channels share this trait. In
particular, the channel may have the property of burst
errors and/or unidirectional errors.

Burst Error: a contigu-
ous sequence of bits all of
which are incorrect.

A channel prone to burst errors may be usually cor-
rect, but when errors occur, long and entire sequences
are found in error. For example, an incorrectly shielded
wire may accurately conduct bits except when a neigh-
boring wire is powered on, in which case interference
ruins the transmission property of the first wire.

Unidirectional Error: an er-
ror that can only occur in
one direction; such as flip-
ping a one to a zero, but not
the other way around.

Some channels may be prone to unidirectional errors.
A channel which experiences unidirectional errors only
has errors that flip bits in one direction, usually one to
zero, but not zero to one. Such errors might occur in the
situation of a long distance wireless connection where
signal attenuation causes loss of bits occasionally. Uni-
directional errors are easier to detect and correct than
unbiased errors because the 1s can be assumed to be
correct, and only the 0s may be in errors.

In order to evaluate various error detecting and cor-
recting codes, several measures were created. The
Hamming distance is useful for counting the number
of errors that have occurred in a particular sequence
of bits. Two sequences have a Hamming distance of 1
if one error occurred, a distance of 2 if two errors oc-
curred, and so on.

Hamming Distance: given
two bit sequences of equal
length, the number of po-
sitions in which the values
differ.

All error detection or correction codes work by adding
additional bits to the data sequence to be sent. Some
codes require significantly more overhead than oth-
ers. The code rate of an error detection or correction
code is defined as the ratio of message data bits to total
bits. For example, if a certain code transmits 8 data bits
along with 2 error detection bits, that would be a (10,8)
code.

Code Rate: a measure of the
overhead of an error detec-
tion or correction code.

When counting the number of errors detected and/or
corrected by these codes, it is conventional to assume
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the worst case scenario.

15.1 Repetition

The simplest of all codes is to repeat the message sev-
eral times. Repetition is easy to implement and under-
stand, but very inefficient (low code rate). Repetition
can be categorized primarily by how many times each
message packet will be sent; if each message is sent
twice, one error can be detected and no errors can be
corrected (we cannot determine which of the two mes-
sages is the correct one).

Although the error detec-
tion count is based on
worst case scenario, you
might notice that repeti-
tion with three or more in-
stances is well suited to cor-
rect against burst errors.

The reason only one error can be detected in the worst
case is that two errors could potentially align in the
same position in each copy. Consider the message
01012, sent twice using repetition: 0101 01012. Two er-
rors could occur as follows: 010 0 010 0 2. In this case,
both copies appear identical to the receiver, and the er-
ror passes undetected.

If the message length is
n, and the number of in-
stances is k, then the repe-
tition code has a code rate
of R(kn, n).

If the message is sent three times, up to two errors can
be detected, or up to one error can be corrected. The
error correction works by majority vote; if a position is
found to be inconsistent, whichever value is most com-
mon in that position is taken as the correct value. If
only one error has occurred, this will always yield the
correct original data.

The risk of error correction in the above case is that two
errors, while detected, could be incorrectly “fixed” by
a wrong vote.

If the message is sent more than three times, additional
errors can be detected and corrected. In general, if the
message is sent k times, up to k − 1 errors can be de-
tected, or k − 2 errors can be corrected.

Repetition’s low code rate combined with its unspec-
tacular error detection rate mean that this technique is
essentially never used in practice.
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15.2 Parity

A simple and common error detection code is the par-
ity bit. The parity bit is a single bit attached to a mes-
sage indicating how many 0s or 1s are present in the
message. Parity is referred to as either even or odd, re-
ferring to the total number of 1 bits in the message after
the parity is added.

Parity Bit: a bit making the
number of 1 bits in a mes-
sage even or odd, as se-
lected.

For example, using even parity, the parity bit (0 or 1)
will be added to the message to make the total number
of 1s in the message even. If the message is 00102, then
the parity bit will be 1, making the final coded mes-
sages 0010 12, which has an even number of 1s (count-
ing both data and parity). Likewise, if the message is
11002, the parity bit will be 0, ensuring the total num-
ber of 1s remains even. The final coded message would
be 1100 02.

If the message length is n,
then the parity code has a
code rate of P (n+ 1, n).

� Example 15.1 • Assume the message 10102 will be
transmitted with even parity over a noisy channel.
Here, the parity bit is determined to be 0 (because there
are already an even number of 1s), and the message
1010 02 is transmitted. The receiver receives 1 1 10 02.
Counting the number of 1s, the receiver finds it is odd,
and knows an error has occurred. Two errors, however,
would be undetectable: 0 1 10 02 has an even number
of 1s, which is as the receiver expects, and the errors
pass undetected. �

Let the bits of a message be
b1, b2, ...bn. The value of an
even parity bit can be com-
puted as Pe = b1 ⊕ b2 ⊕ ...⊕
bn.

A parity bit can detect only one error, and correct
none. However, it has the advantage of being very
lightweight and easy to compute. A logic circuit can
compute a parity bit using only XOR gates.

An extended version of parity which uses multiple bits
by counting the number of 1s is the checksum. Al-
though this technique decreases the chance of an unde-
tected two-bit error, it is still only guaranteed to detect
one error.
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15.3 Berger Code

The Berger code is an error detecting code designed
for channels with unidirectional errors which may only
convert 1s to 0s. The Berger code works by counting
the number of 0 bits in a piece of data. This count is at-
tached to the end of the data as an unsigned integer of
length ⌈log2(n+1)⌉ where n is the number of data bits.
The receiver counts the number of 0s and compares it
to the count specified by the code. Errors in the data
section will drive the number of 0s up, while errors in
the check section will drive the desired number of 0s
down; thus, the only way the number of 0s in the data
and the number of 0s indicated by the count will match
is if no errors occur.

Berger Code: error detect-
ing code capable of detect-
ing any number of errors as
long as all errors are of one
type (such as 1 to 0).

The Berger code is defeated if a 0 to 1 style error is
possible; it is also unable to specify an error correc-
tion (what bit the error(s) occurred in, specifically),
thus a detected error requires a retransmission from the
sender.

� Example 15.2 • For example, consider the data
0010 1101 10102 which is to be transmitted across a
channel subject to unidirectional error. In this case, a
Berger code may be applied. Twelve bits of data are
being transmitted, so ⌈log2(12 + 1)⌉ = 4 bits of code
will be used. There are six zero bits in the data, thus
the check portion is 01102. The sender transmits the
data followed by the check 0010 1101 1010 01102.

The receiver and sender
must already be in agree-
ment over what code to
use and how many bits the
code is being applied to.

We will consider four cases: no errors, errors in the data
only, errors in the check only, or errors in both. If no er-
rors occur, the receiver receives 0010 1101 1010 01102. It
separates out the data from the check, counts the num-
ber of zeros in the data and confirms that this matches
the check. The data is accepted as error-free.

Assume unidirectional errors in the data occur; the re-
ceiver receives 0010 1 0 01 10 0 0 01102. In this case,
when the receiver counts the number of zero bits in
the data, the total comes to eight; but the check portion
specifies there should only be six. The receiver discards
the data and asks the sender to resend it.
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Next, consider the case of unidirectional errors in the
check; the receiver receives 0010 1101 1010 01 0 02. In
this case, when the receiver counts the number of zero
bits in the data, the total comes to six; but the check por-
tion specifies there should only be four. Although the
data is actually intact, the receiver cannot determine if
the error is isolated to the check bits or not, and must
ask the sender to resend.

Finally, consider the case of unidirectional errors in
both the data and the check; the receiver receives
0010 0 0 01 1010 0 0 102. In this case, when the re-
ceivers counts the number of zero bits in the data, the
total comes to eight, but the check portion specifies
there should only be two. The receiver discards the
data and asks the sender to resend it. �

15.4 Hamming Code

Error detection codes suffer from the downside that
when an error is detected, the channel must be inter-
rupted in order to ask the sender to sender the dam-
aged message again. Such an interruption can dramat-
ically slow down the apparent throughput of a chan-
nel. As much as possible, such interruptions should be
avoided.

Hamming Code: a simple er-
ror correcting code that can
correct one error.

In order to avoid interrupting the sender, it is possible
to develop codes which not only detect but can also
correct certain errors.

One of the early but still popular codes for this pur-
pose is the Hamming code. The Hamming code uses
overlapping parity bits to pinpoint the location of any
single error in a message.

One common instance of the Hamming code is H(7,4)
which encodes four bits of data in seven total bits (three
bits used for error correction). This code can correct
any single bit error.

In this Hamming code, the three parity bits are located
at the first, second, and fourth positions. The first par-
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ity bit is defined by p1 = d1⊕d2⊕d4. The second parity
bit is defined by p2 = d1 ⊕ d3 ⊕ d4. The final parity bit
is defined by p3 = d2 ⊕ d3 ⊕ d4.

The receiver recalculates the parity to check if an error
exists. If all the received parity bits match the calcu-
lated parity bits, no error exists. Otherwise, to find the
position of the error, start with 0. If r1 ̸= p1, add 1. If
r2 ̸= p2, add 2. If r3 ̸= p3, add 4. This value will show
where in the encoded message the error is found.

� Example 15.3 • For example, assume the message
01012 is to be transmitted using the H(7,4) code. In this
message, d1 through d4 correspond to the four bits of
the message; with d1 = 0, d2 = 1, d3 = 0, and d4 =
1. The parity bits will be computed as shown, namely
p1 = d1 ⊕ d2 ⊕ d4 = 0 ⊕ 1 ⊕ 1 = 0, p2 = d1 ⊕ d3 ⊕ d4 =
0⊕ 0⊕ 1 = 1, and p3 = d2 ⊕ d3 ⊕ d4 = 1⊕ 0⊕ 1 = 0.

The seemingly random mix
of parity with data al-
lows a fast mathematical
technique known as matrix
multiplication to be used to
encode messages.

The final message is constructed following the pattern
p1p2d1p3d2d3d4. The encoded message is thus 01001012.
�

� Example 15.4 • Imagine this message is sent over
a noisy channel, and an error occurs. The receiver re-
ceives 010010 0 2. To check the value, the receiver first
separates the parity bits from the data, as shown above.
The received version has parity r1 = 0, r2 = 1, r3 = 0

and data 010 0 . The receiver still does not know that
an error exists in the data.

The receiver now recalculates the expect parity using
the technique above. They find the expected parity is
p1 = 1, p2 = 0, p3 = 1. These parity values do not match
the received parity values, thus, an error exists. To pin-
point the error, take each calculated parity bit which
does not match the received parity bit (in this case, all
of them) and sum the positions (with the leftmost po-
sition being 1) that those parity bits appear in the mes-
sage.

In this case, since all three parity bits do not match the
expected values, the error is at position 1 + 2 + 4 = 7.
Counting the leftmost bit as number 1, bit number 7
pinpoints the error.
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The error can be corrected by flipping the offending bit.
�

� Example 15.5 • An error can occur in parity as well.
Imagine the previously encoded message, 01001012,
was received with one error: 010 1 1012.

In this case, the received parity is r1 = 0, r2 = 1, r3 =
1. The receiver again starts by calculating the expected
parity. The expected parity is p1 = 0, p2 = 1, p3 = 0.
The expected and received parities do not match, so an
error has been found.

An error which damages
only the parity and not
the data is still considered
an error because the error
correction process must be
undertaken before the re-
ceiver will know whether
or not a data error has oc-
curred.

The location of the error is pinpointed by noting which
parity bits don’t match (just r3 ̸= p3 in this case), and
adding the position value for the non-matching bits. In
this case, the error is found in position 4 in the encoded
message. Position 4 is the third parity bit, indicating
that the error has not damaged the data. �

An alternative approach to finding the location of the
error is to view each parity bit as representing a set of
data bits that it is based on. So P1 = {d1, d2, d4}, P2 =
{d1, d3, d4} and P3 = {d2, d3, d4}. To find the location of
an error, take the intersection of all the sets, with the
complement of those sets whose parity bit (calculated
vs received) matches.

In the above examples, we first saw the case when
all three parity bits (calculated vs received) were mis-
matched. In that case, the error was in P1 ∩ P2 ∩ P3 =
{d4}. In the case where a parity bit itself is in error, the
result of the intersection will be the empty set, since no
data bit is in error. As above, P ′

1 ∩ P ′
2 ∩ P3 = ∅.

15.5 Reed-Muller Code

The Reed-Muller code, used in applications such as
early space probe imaging transmissions, is able to cor-
rect more errors although at a cost of a lower code rate.
A particular instance of the Reed-Muller code is the
Hadamard code which provides a simple construction
and excellent error correcting properties.
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The Hadamard code is constructed by starting with a
small 2-D array:

1 1
1 0

The seed must be grown to construct an array. Each
growth increases the number of data bits by one and
also increases the number of correctable errors by one.
A technique to grow a Hadamard array is to make
three copies of it and arrange them with the original
in a square, with the bottom-right copy inverted. Fi-
nally, after the seed has been grown, a copy is made, in-
verted, and placed below. This procedure sounds com-
plicated but can be quickly realized through the use of
examples.

Taking the seed above, we will perform no growth
steps and go immediately to the final copy-and-invert.
The leftmost column indicates the binary value of the
data, and the row across indicates the encoded mes-
sage to transmit.

00 1 1
01 1 0
10 0 0
11 0 1

The above array is RM(2,2) which encodes two bits of
data into two total bits, and has no capability for error
detection. The value to be transmitted is found by row
(the first row corresponds to 00, the second to 01, and
so on), and then the entire row is transmitted.

As the array expands, the error correction capabilities
improve. Performing a single growth step before the
copy-and-invert yields RM(4,3).
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000 1 1 1 1
001 1 0 1 0
010 1 1 0 0
011 1 0 0 1
100 0 0 0 0
101 0 1 0 1
110 0 0 1 1
111 0 1 1 0

The above array is RM(4,3) which encodes three bits
of data into four total bits, and can detect (but not cor-
rect) any one error. In this array, the data value 0 would
be transmitted as 11112, while the data value 6 would
be transmitted as 00112. Recall that the value to trans-
mit indicates which row to select; the entire row is then
transmitted.

In addition to the square,
copy and invert technique,
it is possible to construct
the next Hadamard array
by taking any existing
Hadamard array and re-
placing each 1 with a copy
of the 2x2 seed, and each 0
with a copy of the inverse
of the 2x2 seed.

0000 1 1 1 1 1 1 1 1
0001 1 0 1 0 1 0 1 0
0010 1 1 0 0 1 1 0 0
0011 1 0 0 1 1 0 0 1
0100 1 1 1 1 0 0 0 0
0101 1 0 1 0 0 1 0 1
0110 1 1 0 0 0 0 1 1
0111 1 0 0 1 0 1 1 0
1000 0 0 0 0 0 0 0 0
1001 0 1 0 1 0 1 0 1
1010 0 0 1 1 0 0 1 1
1011 0 1 1 0 0 1 1 0
1100 0 0 0 0 1 1 1 1
1101 0 1 0 1 1 0 1 0
1110 0 0 1 1 1 1 0 0
1111 0 1 1 0 1 0 0 1

The above array is RM(8,4) which encodes four bits of
data into eight total bits, and can correct one error. At
this point, the Hamming code is still superior, encod-
ing more data bits into less total bits and correcting one
error. However, as the array expands, more error cor-
recting is possible.

The next array, RM(16,5), can correct up to three er-
rors. The subsequent array, RM(32,6), can correct up
to seven errors.
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The error correction capabilities of this code derive
from the Hamming distance between each row in the
array. When a row is received, the receiver finds which
row in the array is most similar (has the lowest Ham-
ming distance) to the received row. As the array grows,
the minimum Hamming distance between the rows
also grows.

Any code whose possible
values have a minimum
Hamming distance of d will
be able to correct up to⌊
d− 1

2

⌋
errors.

The general properties of the Hadamard Reed-Muller
code specify that n data bits will be represented with
2n−1 total bits, and be able to correct up to 2n−3 − 1
errors. One additional error can be detected, but not
corrected. If additional errors have occurred, then the
received error will be closer (in Hamming distance) to
an different original row, causing a wrong value to be
selected.

�Example 15.6 • For example, using the RM(8,4) array
shown above, imagine the sender wants to transmit the
value 01102. This corresponds to the row 1100 00112.
This eight bit sequence is transmitted to the receiver,
who receives 1100 1 0112, with a single error. The re-
ceiver notes that this eight bit sequence does not di-
rectly correspond to any of the eight bit sequences
shown in the RM(8,4) array. The receiver then deter-
mines the Hamming distance (how similar/different)
the received row is to each other possible row. The ta-
ble below highlights differences. The Hamming dis-
tance (number of differences) is shown in the right-
most column.
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0000 1 1 1 1 1 1 1 1 3
0001 1 0 1 0 1 0 1 0 3
0010 1 1 0 0 1 1 0 0 3
0011 1 0 0 1 1 0 0 1 3
0100 1 1 1 1 0 0 0 0 5
0101 1 0 1 0 0 1 0 1 5
0110 1 1 0 0 0 0 1 1 1
0111 1 0 0 1 0 1 1 0 5
1000 0 0 0 0 0 0 0 0 5
1001 0 1 0 1 0 1 0 1 5
1010 0 0 1 1 0 0 1 1 5
1011 0 1 1 0 0 1 1 0 5
1100 0 0 0 0 1 1 1 1 3
1101 0 1 0 1 1 0 1 0 3
1110 0 0 1 1 1 1 0 0 7
1111 0 1 1 0 1 0 0 1 3

The entry with the lowest Hamming distance between
itself and the received sequence is the row for 01102, so
the receiver will assume that is the desired value. �
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15.6 Exercises

Solutions to these exercises can be found in Appendix A.15 on page 327.

1. Problem: Find the Hamming Distance
between the two messages 0101 10012
and 0111 10102.

2. Problem: The following messages have
an even parity bit appended to the end
and were transmitted over a possibly
noisy channel, with at most one error.
Determine which messages contain an
error.

(a) 1111 11112

(b) 1010 10112

(c) 1111 00002

(d) 0000 00002

3. Problem: Construct a logic circuit which
accepts 4 data bits as input and in-
dicates the correct even parity bit for
these four data bits.

4. Problem: The following messages, each
with 8 data bits, have been encoded
using the Berger code and transmitted
over a channel which may only convert
1s to 0s. Determine which messages
contain error(s).

(a) 0101 1001 01002

(b) 1101 0011 00012

(c) 0011 0111 00102

(d) 1110 0111 00102

5. Problem: Encode the following mes-
sages using the H(7,4) Hamming code.

(a) 00012

(b) 00002

(c) 11102

(d) 10102

6. Problem: The following messages have
been encoded with the H(7,4) Ham-
ming code and transmitted over a pos-
sibly noisy channel, with at most one
error. Determine which messages con-
tain an error. In all cases, find the orig-
inal 4-bit message.

(a) 10101012

(b) 11111112

(c) 11100102

(d) 01101002

7. Problem: Construct the array for the
Hadamard code RM(16,5).

8. Problem: The following messages have
been encoded using the RM(16,5)
Hadamard code and transmitted over
a possibly noisy channel, with up to
four errors. Determine which mes-
sages contain error(s) and how many
error(s) are present. In cases with up to
three errors, find the original 4-bit mes-
sage. In cases with four errors, show
why recovering the original 5-bit mes-
sage is not possible.

(a) 1010 1010 1010 10102

(b) 0111 1000 0000 01112

(c) 0011 1110 1100 00112

(d) 0011 1100 0011 00002

(e) 1000 1110 1101 01002
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Chapter 17
Digital Logic

Previously, we indicated that logic gates are the funda-
mental constructs of physical computation. Using logic
circuits, operations such as addition and subtraction,
memory, decisions, and counting become possible us-
ing nothing more than basic and compound logic gates.

Due to universality, it
would be possible to con-
struct an entire computer
processor out of only
NAND gates, for instance.

The central processor and other supporting compo-
nents inside of a computer consist of many of these
constructs interconnected to allow a variety of funda-
mental data operations to be performed. In these ex-
amples, for simplicity, we will show small bit widths
(usually 4 or 8 bits) and largely isolated circuits. Mod-
ern processors are usually constructed to perform op-
erations at 64 bits, and most have a substantial number
of hardware implemented instructions (more than 50),
various levels of memory and cache, and other opti-
mizations. The study of CPU design is an interesting
field, but far beyond the scope of this text.

17.1 Addition

We have seen that arbitrary Boolean expressions can be
translated into logic circuits. However, what expres-
sion (and, correspondingly, logic circuit) could repre-
sent addition? First, recall the fundamental two bit bi-
nary addition:

170
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0 + 0 = 0
1 + 0 = 1
0 + 1 = 1
1 + 1 = 10

There are two inputs, and two outputs. The reason two
outputs are needed is that 1 + 1 = 10, which has two
bits. In wider additions, the leftmost bit of a two-bit
result is carried, so we will call this bit the carry. The
rightmost bit is the sum. We can rearrange this result
to follow the pattern of a truth table, with 1 becoming
True, and 0 becoming False.

a b Carry Sum
F F F F
T F F T
F T F T
T T T F

It would be possible to generate a logical expression for
each output using disjunctive normal form, but per-
haps a shorter expression could be eyeballed in this
case. Looking at the output Carry, what operator does
this seem to be based on? It is true when both inputs
are true, and only then. Thus, Carry can be represented
by AND. Likewise for Sum, it is true when either but
not both of its inputs are true. Thus, Sum can be rep-
resented by XOR. If a and b are inputs, then the log-
ical expressions for these outputs could be written as
s = a⊕ b and c = a ∧ b.

These expressions can now be formed in a logic circuit,
known as a half-adder.

Half Adder: logic circuit that
can add two bits.

However, a half adder is of minimal practical use. In
order to add a number that is more than one bit in size,



172 CHAPTER 17 | Digital Logic

the carry result must be dealt with from one column to
the next. This means that every addition column (ex-
cept the right-most one) for two binary numbers actu-
ally has three inputs: the respective bits from the num-
bers, as well as the carry from the prior column.

Recall the table for three bit addition:

0 + 0 + 0 = 0
0 + 1 + 0 = 1
0 + 0 + 1 = 1
0 + 1 + 1 = 10
1 + 0 + 0 = 1
1 + 1 + 0 = 10
1 + 0 + 1 = 10
1 + 1 + 1 = 11

There are still only two outputs, the sum bit and the
carry bit to the next column. We could follow a simi-
lar process as previously, constructing a truth table and
then deriving an expression. However, given that we
have already defined two bit addition, we can take ad-
vantage of the associative property of addition to note
that a + b + c = (a + b) + c. That is, the half adder can
add the first two bits, and the result can be added to
the third bit with a second half adder.

It is very common to duplicate portions of circuits to
serve larger inputs; in order to avoid manually dupli-
cating gates which could lead to a large and confusing
circuit, we will conceptually package a block of gates
to reuse into a named box. Inside the box are the ex-
act same gates that have already been developed. For
instance, here is a package for half adder:

This half adder package can now be used as if it were
a single gate in its own right, with inputs and outputs,
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but every one of these will actually represent an AND
and an XOR, as shown previously.

Performing three bit addition using two half adders
may seem straightforward in terms of calculating the
sum, but each half adder has its own carry output,
while the overall circuit itself has only one carry out-
put. It is not immediately clear how to connect the
carry outputs.

To determine how the carry works, consider the origi-
nal three bit addition table. In this case, the carry out
is true only when two or more inputs are true. Note
the in the half adder, the carry output is implement as
AND, which will show if two inputs are true. Thus,
is either half adder has a true carry, there are two true
values being input into that half adder, and so the final
addition will have a true carry out.

Either an OR or an XOR
may be used to combine
the carry outs, as it is
not possible that both half
adders will produce a true
in their carry outputs as the
same time.

The completed circuit is known as a full adder. Full Adder: logic circuit that
can add three bits.

The ability to add three bits corresponds to the two in-
puts and carry in that each column of binary addition
performs. Thus, to add any two binary numbers both
of n bits, we need n full adders connected together. For
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each full adder, the sum output goes to the correspond-
ing column in the addition result, while the carry goes
to the next column’s full adder. To understand how this
procedure works, perform a binary addition by hand
and note that each column produces one bit of the sum
and possibly a carry bit to the next column.

In order to add two numbers of n bits, we will need
multiple full adders (one for each bit). Thus, we will
create a package for full adder so that the structure of a
full adder (which consists of nothing more than AND,
OR, and XOR) can be duplicated easily.

Once larger adders are con-
structed in this way, they
themselves can be chained
together. For example, four
4-bit adders could be con-
nected to make a 16-bit
adder.

We can simplify (for the moment) this mechanism
slightly by making the first (rightmost) adder a half-
adder, since there will never be any carry in to the
rightmost addition.

Besides the four sum bits, the final leftmost full adder
has a carry out that is unaccounted for. We could ex-
tend the size of output to five bits, however, if we are
considering the techniques using in computer design,
the number of bits is largely fixed because the output
from one operation usually proceeds into another oper-
ation. If we increase the output size to five bits, then the
input sizes would need to be increased, which would
add an extra full adder, increasing the output size to six
bits and so on, forever.

Thus, the last carry out is not part of the output proper,
but instead indicates (for unsigned integers) when the
sum of the two n bit numbers cannot be represented in
n bits; this is the overflow condition.

� Example 17.1 • For example, we will consider a four
bit addition circuit. The wiring is somewhat complex,
so it serves to show each segment piecemeal first, and
the connect them all together.
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First, we show the wiring for one of the 4-bit input
blocks. Each bit in the input connects to the corre-
sponding input bit on each adder.

Due to the commutative
property of addition, it
does not matter which
input on the adder a par-
ticular bit is connected
to. However, the columns
must be correct. So the
rightmost bit must connect
to the rightmost adder, but
it does not matter which
input on the rightmost
adder is selected, and so
on.

Next, we show the same wiring for the other 4-bit input
block.
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When the carry out wires are connected, each adder’s
carry out connects to the input of the next adder. For
the last adder, the carry out connects to an overflow in-
dicator. When the indicator activates, the two inputs (if
unsigned integers) cannot be successfully represented
in 4 bits.



SECTION 17.1 | Addition 177

The sum outputs from each adder connect to the corre-
sponding sum columns in the result.

Here is the entire four bit adder, in operation, showing
that 01012 + 00112 = 10002.

�
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17.2 Subtraction

In a previous chapter, the value of Two’s Complement
as a representation of negative was affirmed in particu-
lar because it allowed the same circuit to perform both
addition and subtraction. We will use the 4 bit adder
created in the previous section with only a few minor
changes to perform addition and subtraction.

First, when switching mentally from unsigned to
signed representation, the overflow indicator ceases to
be meaningful. If there is any doubt about this, attempt
−110 + 110 = 010 in four bit Two’s Complement, using
the adder shown previously: 11112C+00012C = 00002C ,
which is the correct result, but the overflow indica-
tor turns on, although this indicates no error condition
when dealing with signed numbers.

Without making any changes, the same addition cir-
cuit can now be used for subtraction by transforming
the request a − b into a + (−b) and finding the Two’s
Complement representation for −b as appropriate.

However, it would be nice if the circuit could perform
the Two’s Complement work for us. So, for instance,
we could enter two positive values a and b and indicate
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if we want a + b or a − b to be computed. If a − b is
selected, then the Two’s Complement of −b must be
found.

The mechanical technique for finding the inverse (neg-
ative) of any Two’s Complement value is to invert and
add one. We will consider these steps separately. First,
to invert. If we always wanted to invert the four bit
value, this could be accomplished using NOT gates.

An inverter applies the bit-
wise NOT operator, ∼

However, the main weakness of this approach is that
there is no capability to select whether or not the in-
verter should be active. Thus, given two positive val-
ues a and b, we would only be able to perform a− b. If
we want to be able to select between addition and sub-
traction, the inverter must have an additional input. If
the input is true, then the four bits will be inverted. If
the input is false, then the four bits will not be inverted.

How can such a selectable inverter be constructed?
First, consider the simplest version: a single bit se-
lectable inverter. This circuit would have two inputs
(one for data, and one for the invert selection) and one
output (the data, either inverted or not). To determine
how this circuit should be implemented, first design a
truth table for it. Let d indicate the input data, and i
indicate whether or not to invert.

d i Output
T T
T F
F T
F F
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First, if the invert flag i is set to false, then the data d
should be passed directly to the output.

d i Output
T T
T F T
F T
F F F

Next, if the invert flag i is set to true, then the output
should be the opposite of the data d.

d i Output
T T F
T F T
F T T
F F F

What expression meets the criteria shown by this truth
table? This truth table can be represented in one oper-
ation using XOR. For every bit that we may want to in-
vert, we will connect that data bit to an XOR gate, and
the invert flag will connect to all XOR gates. Thus if the
invert input is set to false, the data will pass through
normally; if it is set to true, the data will be inverted.
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This inverter can be used to solve the invert problem.
But how can the add one be applied on request as well?
Look back to the original four bit adder. The rightmost
adder was a half adder instead of a full adder, because
there was no possibility for a carry in on the first bit.
However, if a full adder were used, this carry in, if set,
would have the effect of adding one to the result.

The final circuit includes the inverter and four bit
adder, extended to accept a carry in. An additional
input indicating whether or not subtraction should be
performed is included.

� Example 17.2 • For example, here the circuit is
demonstrated adding 510+110 = 610. Each is first repre-
sented as Two’s Complement positive numbers, giving
the inputs 01012C + 00012C = 01102C . Note that be-
cause the subtraction mode is not selected, the inverter
does nothing, so the input passes through it harmlessly.
Likewise, there is no additional input into the adder, so
the adder considers only the exact values given here,
producing a straightforward binary addition.
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�

� Example 17.3 • If the circuit is switched into sub-
tract mode without changing the inputs, then it will
compute 510 − 110 = 410. The steps involved here are
slightly more complex. The subtract mode, together
with the addition circuit, means that the compute will
actually, in some sense, process 510 + (−1)10. First, the
subtract mode activates the inverter, which takes the
input 00012 and turns it into 11102. The correct repre-
sentative for −110 is 11112C , so we can see that the in-
verted value is short by one. This makes sense as the
mechanical conversion procedure is to invert AND add
one.

The subtract flag also goes to the carry in on the full
adder, which adds one to sum, taking care of the
add one portion of the conversion. Thus, the sys-
tem mechanically transforms the expression as follows
01012C−00012C = 01012+(−00012) = 01012+(∼00012)+
12 = 01012 + 11102 + 12 = 101002. Keep in mind that
our output is only four bits, so the extra bit triggers the
overflow (which is now meaningless in Two’s Comple-
ment mode) and our final result is 01002C , which is the
correct subtraction results.
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�

This circuit will work for all Two’s Complement val-
ues, positive and negative, and will produce a correct
result as long as the result can be represented with
four bit Two’s Complement. When dealing with Two’s
Complement, the overflow output is not sufficient to
determine if the result could not be represented. A
more sophisticated error detection mechanism will be
needed.

17.3 Comparison

Another common task for computers is to compare two
values to determine which one is smaller, or if the two
values are equal. Like addition, a multi-bit comparison
circuit can be constructed incrementally by first con-
sidering the most basic comparison and then building
them together.

Imagine comparing two bits, a and b. If we want to de-
termine whether a < b, a ↔ b, or a > b, this at first
looks like three operations. However, it is in fact only
two: if we get a false result on any two operations, then
the third must be true. For our purposes, we will im-
plement a < b and a ↔ b, and then let a > b be defined
as ¬((a < b) ∨ (a ↔ b)).
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The equality operator, ↔, is already known is to be im-
plemented with XNOR. However, how can the opera-
tor < be implemented? We can begin by constructing
a truth table. Recall that T maps to 1 and F maps to 0,
therefore we will use 0 and 1 instead of F and T in the
inputs of the this truth table, as numeric comparison is
our goal.

a b a < b

1 1 F
1 0 F
0 1 T
0 0 F

Thus, a < b can be represented with the expression ¬a∧
b.

Next, comparison must be extended to multiple bits.
For equality, each respective bit pair will be sent into an
XNOR gate. This gate will output true if the bit pair is
equal, and false if not. Equality is defined as all bits be-
ing equal, so the results of these XNOR gates will then
be placed into an AND, so that the two input numbers
are considered equal only if all their bit pairs are equal.

� Example 17.4 • Four bit equality can be defined
first with two four-bit inputs a and b, broken down
into bits: a3a2a1a0 and b3b2b1b0. Each respective posi-
tion will paired with XNOR, and combined with AND:
(a3 ↔ b3) ∧ (a2 ↔ b2) ∧ (a1 ↔ b1) ∧ (a0 ↔ b0).

A logic gate implementation, shown here, demon-
strates how 01102 and 00112 are not equal due to their
difference in two positions.
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�

To process a < b with multiple bits, the general pro-
cedure for comparing binary values must be devised.
Given two binary numbers of equal length, to find if
a < b, follow these steps (note that this is fundamen-
tally the same way you would determine which of any
two numbers of any base are less):

1. Start with the left-most bit of both numbers.

2. If the bit from a is 0, and the bit from b is 1, then
a < b.

3. If the bit from a is 1, and the bit from b is 0, then
a > b.

4. Otherwise, the bits are equal. If bits remain, move
one bit to the right and go to step 2.

5. If no bits remain, the numbers are equal.

� Example 17.5 • Four bit less-than can be defined in-
crementally by first defining the comparison step for
each bit, and then chaining them in the appropriate or-
der. As before, define two four-bit inputs a and b, bro-
ken down into bits: a3a2a1a0 and b3b2b1b0.
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Using the definition of < described above, namely that
for any pair of bits, x < y is defined as ¬x ∧ y, we can
define a < b as (a3 < b3)∨((a3 ↔ b3)∧(a2 < b2))∨((a3 ↔
b3)∧(a2 ↔ b2)∧(a1 < b1))∨((a3 ↔ b3)∧(a2 ↔ b2)∧(a1 ↔
b1) ∧ (a0 < b0)).

Although this expression looks complex, it follows
from the step-by-step implementation given above,
where each bit is compared from the right, and only if
all bits so far are equal are further comparisons made.

A logic gate implementation shown here, demonstrates
how 01002 < 01102.

�

17.4 Encoders and Decoders

Many essential components of a computer require in-
dicating which task, operation, or setting to select by
use of a binary number. For this to be accomplished,
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a given number must be split into each possible value.
An n bit binary number has 2n possible values. Estab-
lishing the relationship between these are the responsi-
bility of encoders (which have 2n inputs and n outputs)
and decoders (which have n inputs and 2n outputs).

Encoder: logic circuit that
converts from one input
line into an equivalent bi-
nary number.

In a simple encoder, exactly one of the 2n input lines is
expected to be true. The encoder will then output the
binary value associated with the particular, selected,
input line.

� Example 17.6 • The abbreviated truth table below
shows a 4 to 2 encoder. Notice that the value of the
output O is equal to the binary value of the particular
selected input line I .

I3 I2 I1 I0 O1 O0

F F F T F F
F F T F F T
F T F F T F
T F F F T T

An astute reader will note that a truth table with four
inputs should have 16 rows, but this only shows four.
In a simple encoder, the output values are only defined
when exactly one input is true. To handle the case
when multiple inputs are true, a priority encoder can
be used.

Priority Encoder: an en-
coder which outputs the
binary value equivalent to
the highest active input
line.

A logic gate implementation of a 4 to 2 simple encoder
is shown here.

The I0 line is not connected
because if the input 0 is se-
lected, then no outputs will
be on, as the value 0 is rep-
resented by all 0s in binary.
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�

A decoder performs the opposite task of an encoder.
Given any combination of input values, it will pro-
vide exactly one true output indicating which num-
ber is formed from the inputs. Decoders are useful for
addressing memory and selecting CPU instructions,
among other tasks.

Decoder: logic circuit that
converts from input into
one output representing
the input’s binary value.

� Example 17.7 • The truth table for the 2 to 4 decoder
is shown below.

I1 I0 O3 O2 O1 O0

F F F F F T
F T F F T F
T F F T F F
T T T F F F

A straightforward logic gate implementation uses dis-
junctive normal form for each output.

�

17.5 Feedback Circuits

In previous chapters, we have seen that Boolean ex-
pressions, truth tables, and logic circuits are all inter-
convertible. This is generally true, however, only with
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respect to feed-forward logic circuits. It is also possi-
ble to create a logic circuit where the output from one
portion of the circuit feeds back, as a loop, into ear-
lier portions of the circuit. Such circuits do not have a
strict fixed input gives fixed output behavior, but may
change their output based on previous values, or even
change output without change of input.

Such circuits are essential to computers, as they allow
for memory, timing, and dynamic behavior. In many
cases, signal propagation speed, a physical attribute
of the implementation, becomes an important factor in
circuit design.

� Example 17.8 • The simplest, although not useful,
feedback circuit is a cycle of three NOT gates. The in-
put to the first NOT gate will, mathematically be the
same as its output, which will cause the first NOT gate
to invert, and the process will repeat. This circuit will
alternate its output between true and false as rapidly
as the signal can propagate.

�

In certain feedback circuits, a stateful truth table can
be used which takes into account the previous output
from the circuit in defining the behavior or new out-
put. There may also be undefined states where certain
combinations of inputs create unstable behavior.

� Example 17.9 • A modified version of the three NOT
cycle includes a toggle input. When the input is set to
false, the circuit is in a stable state. When the input is
set to true, the output of the circuit alternates.
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A stateful truth table for this circuit considers that, in
alternation, the output is the opposite of the previous
output. Let I be the input and O be the output.

I Oprev O

T T F
T F T
F T F
F F F

�

17.6 Latches and Flip-Flops

A latch is a single bit memory circuit which retains a
value. The value can be changed at any time as soon
as the command is received. The circuit will retain the
current value until a change command is given.

� Example 17.10 • One of the simplest latch circuits
is the SR latch, which is short for Set-Reset Latch. This
latch has two inputs, one for the set command, and one
for the reset command. The SR latch is composed of
two NOR gates, with the output from each going to the
other as one of the inputs. The circuit has an output,
and its complement.

SR Latch: simple one bit
memory cell which set ei-
ther be Set (true) or Reset
(false).
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When both inputs are false, the current state is main-
tained. When the set input goes to true, the output
becomes true. When the reset input goes to true, the
output becomes false. Note that only at most one of
these inputs may be true at any given time; if both set
and reset are true, the behavior is formally undefined.

SR Latches can also be con-
structed with NAND gates.
This implementation may
be more desirable for cost
or complexity reasons.

Initial condition SET raises output to true

Output remains true RESET switches output to
false

A stateful truth table for the SR latch can be given. Note
that if both S and R are true, the behavior is undefined.

S R Qprev Q

T T T undefined
T T F undefined
T F T T
T F F T
F T T F
F T F F
F F T T
F F F F
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In many cases with complex logic circuits, an abbrevi-
ated truth table using the decision table rules of indif-
ferent conditions, may be more informative. Here is
the table above, simplified.

S R Qprev Q

T T - undefined
T F - T
F T - F
F F T T
F F F F

�

As circuits become more complex, the timing of inter-
actions becomes increasingly significant. Delays in sig-
nal propagation can result in fluctuation of values be-
fore the final, correct value is settled. To ensure that
memory selects the correct value, a clock is often used.
A desirable memory cell will only save a value at the
precise moment indicated by a clock pulse, and ignore
all other variations in input.

Clock: a regular pulse sig-
nal which synchronizes the
activities of logic circuits
throughout a component.

The clock input is often in-
dicated in a logic circuit
with the > symbol.

The time required for signal propagation through var-
ious components limits the maximum speed of the
clock. Computer manufacturers advertise clock speed
as one aspect that can effect overall computational per-
formance.

� Example 17.11 • The first improvement is to only ac-
cept input when a clock signal is present. The D Latch
(short for Data Latch) has a data input and a clock in-
put. When the clock input is set to true, the output
matches the data. When the clock input is set to false,
the output retains its current value regardless of the
data input.

D Latch: one bit memory
cell which holds the given
data when the clock input
is true.

How can this behavior be created? The D Latch can be
constructed using an SR Latch. First, assign the data
line to the set input, and the inverse of the data line
(using a NOT) to the reset input. In this way, the data
input will set or reset the latch as appropriate. Next,
apply an AND gate to each of the SR Latch’s inputs,
with one input of the ANDs connected to the clock. In
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this way, if the clock is false, both inputs to the SR Latch
will be false and it will hold its existing value.

A stateful truth table describes this behavior.

D Clk Qprev Q

T T - T
F T - F
- F T T
- F F F

�

In the example of the D Latch, the memory circuit will
latch the input data for the entire duration that the
clock input is true. This still leaves open the possibility
for the value to fluctuate on a single clock pulse. There-
fore, a revised circuit is needed which acts only at a sin-
gle moment: the edge in which the clock changes from
one value to another.

Edge Triggered Flip Flop:
a memory cell which ac-
quires a value only at the
moment the clock input
changes.

In order to cause a memory circuit to obtain a value
only on the clock edge, two latches can be placed in
sequence, so that one acquires the value as the clock
is true, and the other acquires from the first when the
clock switches to false.

� Example 17.12 • An edge triggered D Flip-Flop is
the most common memory cell design. It has a data in-
put and a clock input. The cell acquires the data input
when the clock input drops (goes from high to low). It
also possible to design the flip-flop to acquire the data
when the clock input raises.

The technique is to apply the clock input directly to the
first D Latch, and then use a not gate so the opposite
of the clock is applied to the second D Latch. In this



194 CHAPTER 17 | Digital Logic

way, then the clock is true, the first D Latch is acquir-
ing the data line. When the clock drops, the second D
Latch acquires the value from the first. However, fur-
ther changes to the data do no effect the circuit because
the clock input to the first D Latch is now false, causing
it to ignore any data inputs.

A stateful truth table describes this behavior. Note that
the phrase “falling” indicates the moment of transition
when the clock changes from true to false.

D Clk Qprev Q

T Falling - T
F Falling - F
- - T T
- - F F

�



SECTION 17.7 | Exercises 195

17.7 Exercises

Solutions to these exercises can be found in Appendix A.16 on page 339.

1. Problem: Using the logical expressions
for the half adder (s = a ⊕ b and c =
a ∧ b), prove the correctness of the con-
struction of the full adder based on two
half adders and an OR gate.

2. Problem: Extend the four bit compar-
ison circuit shown in the chapter to
have three outputs: one for a < b (ex-
isting), one for a = b, and one for a > b.
As much as possible, re-use the exist-
ing circuit.

3. Problem: A multiplexer is a logic cir-
cuit that has n select inputs and 2n data
inputs. The data input corresponding
to the given select value is sent to the
single output line. Implement a 4 to 1
multiplexer; that is, a multiplexer with
4 data inputs and one output.

4. Problem: A clocked T Flip-Flop (T
stands for Toggle) has two inputs: T
and Clock. It will invert its output if
the T is true on the clock edge.

(a) Implement a T Flip-Flop.

(b) If the T input is held true, the out-
put of the T Flip-Flop should al-
ternate at half the rate of the clock
input. Confirm this behavior in
your implementation.

5. Problem: Implement an addressable
memory bank. Provide for four stor-
age locations (addressable by two bits),

with four bits of data held in each stor-
age location. When an address is se-
lected, the current value in that loca-
tion should be provided. It should also
be possible to set a value into the ad-
dressed location.

Consider the four bit add/subtract circuit
shown earlier in the chapter.

6. Problem: Show how the circuit pro-
cesses the following inputs. Is the re-
sult correct or not? If not, why not?

(a) 01012 + 00112

(b) 01012C + 01002C

(c) 01012C − 00012C

(d) 11102 + 11002

(e) 11102C + 11002C

(f) 10102C − 11002C

7. Problem: Devise an improvement to
this circuit that will detect if an addi-
tion or subtraction result is incorrect
due to insufficient bits to represent the
result. Assume all values are Two’s
Complement.

8. Problem: Alter the four bit
add/subtract circuit. Remove one of
the inputs and replace it with four bits
of memory. Add an accumulate but-
ton which updates the memory to be
increased or decreased, as selected, by
the amount of the input.
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Chapter 19
Flowcharts

The techniques seen previously in this part describe
specific approaches to solve certain well defined prob-
lems. However, a general technique for describing the
computational approach to problem solving is needed.
Algorithms are used to describe a solution in sufficient
detail that it could be implemented using a computer;
or analyzed to determine how well a computer would
perform while accomplishing it.

Flowcharts are a technique for visualizing the steps a
computer would take to solve a problem. In order to
compare and contrast different ways of solving a prob-
lem, or determine if a proposed solution is correct, or
analyze a solution technique for performance, the par-
ticular technique must be described in sufficient de-
tail that it could be implemented in a computer. A
flowchart helps to ensure that level of detail is met
without imposing any undue limitations on the scope
of the solution.

19.1 Introduction to Algorithms

Algorithms reflect the fundamental purpose of
computing: the intersection between the physi-
cal/conceptual machine, and the motivations/goals
of the people using them. An algorithm is a recipe, a
process, a set of instructions; it describes what steps a

197
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computer (or human) should take to solve a problem.
These steps or instructions can be described in a
variety of ways: through diagrams, such as logic dia-
grams, automata, or flowcharts; through pseudo-code
or programming languages, or even in plain language.

Algorithm: a step-by-step
process to solve a certain
problem or class of prob-
lems.

Algorithms are commonly encountered in daily life.
Cooking recipes are examples of algorithms. A user’s
manual for some equipment contains algorithms. Most
of these algorithms are not specific enough to be pro-
cessed by a computer, however. Computer algorithms
must be completely unambiguous and require no intu-
ition, “common sense” or other interpretation.

Each algorithm solves a particular problem; the cor-
rectness of an algorithm cannot be determined without
reference to the problem.

� Example 19.1 • Given two whole numbers, a and b,
find the largest number c for which a ÷ c and b ÷ c are
both whole numbers.

This problem is known as the greatest common factor
problem. Consider the following algorithm:

Algorithm: Return the answer c = a+ b.

This IS an algorithm, but it does not correctly solve the
stated problem. Correctness of an algorithm is almost
always the primary determining factor in its consider-
ation: an algorithm which is not correct should not be
considered when solving a problem.

Here is another algorithm:

Algorithm:

1. Input a and b as positive whole numbers

2. If b equals 0, return the answer a

3. Save b in a temporary variable t

4. Update b to be the remainder of a÷ b

5. Update a from t

6. Go to line 2
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This algorithm is known as Euclid’s Algorithm, and
correctly solves the problem stated. However, if the
problem were different, this would not be an appro-
priate algorithm. Algorithm selection and evaluation
always depends on the problem at hand.

For any given problem, there could be more than one
possible algorithm to solve it. For example, here is a
different algorithm to solve the GCF problem:

In general, any given prob-
lem may have many differ-
ent algorithms that solve it.

Algorithm:

1. Input a and b as positive whole numbers

2. Let n be the larger of a and b

3. If a÷ n is a whole number, AND
If b÷n is a whole number, return n as the answer.

4. Otherwise, modify n = n− 1

5. Go to line 2

This algorithm also solves the GCF problem, but using
a different set of steps as compared to Euclid’s Algo-
rithm. �

19.2 Fundamental Control Struc-
tures

Looking at the above described algorithms, certain
similarities become apparent. Certain words and
phrases, like “if” or “go to” appear repeatedly. These
concepts are called control structures.

Control Structure: a tech-
nique which determines
how or in what order
instructions are processed.

In order to be able to perform general computation
(that is, to solve all types of problems that a machine
can solve), three basic control structures are needed.
The manifestation of these structures can vary dramat-
ically from one programming language or machine to
another, but all three will always be present.

1. Sequence: Tasks can be performed in an order
specified.
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2. Selection: Decisions can be made that effect which
tasks are performed, or what order they are per-
formed in.

3. Repetition: Tasks can be performed multiple
times.

For a startlingly different
computational technique
which presents these three
structures in a very dif-
ferent way, investigate
“Conway’s Game of Life”.

A major innovation in describing algorithms empha-
sized these three structures and that all components of
an algorithm should be explicitly described in terms
of these three structures. Thus, instead of using in-
structions like “go to” to wire instructions together; se-
quence, selection, and repetition would be connected
in predictable ways that made reasoning about the out-
come of an algorithm straightforward.

Two famous computer scientists (Abelson and Suss-
man), once wrote, “Programs must be written for peo-
ple to read, and only incidentally for machines to exe-
cute.” This same concern holds for flowcharts: they are
primarily communication techniques to describe algo-
rithms, and thus should be as clear and understandable
as possible. The use of well-known control structures
helps ensure flowcharts are easy to understand.

The flowcharts in this
text are created with
an older program
called the Structured
Flowchart Editor, found at
http://watts.cs.
sonoma.edu/SFC/ Al-
though a variety of pro-
grams will create much
more visually appealing
flowcharts, the SFC pro-
gram has the advantage
that it enforces correct
structure.

The most basic unit of a flowchart is a task, which is
represented by a rectangle. A task must be something
that is unambiguous, with only a single way to do it,
and completable in a single step of work. For example,
“add a to b” is a good task, but “sort the list” is not (be-
cause sorting taking multiple steps, and there might be
multiple ways to do it). Likewise, “take the first item
from the list” is a good task, but “find the largest num-
ber in the list” is not (because finding the largest value
takes multiple steps). Simple one-step tasks are known
as “atomic”, indicating they are conceptually the sim-
plest (or indivisible) kind of thing.

Inadvertently writing com-
plex or ambiguous behav-
ior as a task will make
analysis and implementa-
tion more difficult, as the
precise sequence of steps to
complete the task must, at
some point, be determined;
the flowchart should have
accomplished that step.

Tasks, or other control structures, can be connected by
lines to indicate sequence. A sequence of tasks is nor-
mally run from top to bottom, unless arrows or other
annotations indicate otherwise. The following diagram
shows that task 1 will be followed by task 2. In an ac-
tual flowchart, these would be actual atomic tasks.

http://watts.cs.sonoma.edu/SFC/
http://watts.cs.sonoma.edu/SFC/
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Selection is usually indicated with a diamond shape,
or another angled edge. Two lines branch off of a selec-
tion, indicating the possible outcomes of a condition. A
condition is an expression that evaluates to either true
or false; it is not a task to accomplish but a question to
answer.

For example, “add 1 to b” is a task, but “is b greater
than 1” is a condition. Like a task, a condition should
be atomic. A condition such as “is this list in sorted or-
der” is not appropriate, because determining whether
or not a list is in sorted order takes multiple steps, and
there may be multiple ways to complete the determi-
nation.

The following diagram shows that task A will be run if
the condition turns out to be true, otherwise task B will
be run.

Repetition is based on selection, but involves a line that
goes back up to instructions previously run. Some pro-
grams use a different symbol to differentiate selection
from repetition, but in many cases, the same diamond
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symbol will be used for both. Like selection, repetition
also has a condition. This condition is used to deter-
mine if the repetition continues or if the sequence is
complete.

The following diagram shows that if the condition is
found to be true, task A will be run. The condition will
then be checked again, and as long as it turns out to be
true, the task will be run. When the condition is found
to be false (presumably because of some influence from
the task), then the flowchart moves on to whatever fol-
lows.

19.3 Selection Control Structures

There are several standard ways to handle selection in
a flowchart. The most basic of these is the single deci-
sion. The single decision performs some task if a con-
dition is true, but otherwise it skips that task.

� Example 19.2 • For example, imagine we are writing
a flowchart to describe preparing to leave the house.
We might decide to lock the door if we have our keys
with us, but not lock it otherwise.
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�

A slightly more complicated selection, the double de-
cision, performs one task if the condition is true, and a
different task if the condition is false.

� Example 19.3 • For example, imagine we are writing
a flowchart about going to work. If the sun is out, we
will ride our bicycle, otherwise we will take the car.

�

The most complex selection structure is the switch, or
select-case. This structure allows a single expression
to be tested for multiple possible values. Each value
has a corresponding task (together, the value and task
are known as a case). Finally, there may be a “default”
or “otherwise” case whose task is run if no other case
matches. Switch structures are difficult to use correctly;
it is important that only ONE expression be tested, and
each case corresponds to one possible value of that ex-
pression.

� Example 19.4 • For example, imagine we are writ-
ing a flowchart about dressing to go outside. If the
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weather is cold, we will wear a heavy coat (regard-
less of whether or not it is raining or snowing). If the
weather is not cold but is raining, we will wear a light
coat. Finally, if the weather is neither cold nor rainy,
we will wear a t-shirt.

In a switch, the first case that matches is the only case
that will be run. In this switch example, we first con-
sider if the weather is cold. If it is, we don’t also con-
sider if the weather is rainy; we immediately proceed
to wearing the heavy coat and then on with the pro-
gram. Only if the weather is not cold do we then ask
if the weather is rainy. All the values being checked
relate back to the original expression, “weather”. We
can divide this structure into pieces to make it easier to
follow.

�

The default case is not
required to have a task;
in that situation, the line
would still exist but there
would be no box, indicated
that control simply pro-
ceeded to the next struc-
ture.

The condition, seen first, indicates what each value will
be checked against. We then check each case, from left
to right, taking the first case that matches only and run-
ning its task. If no case matches (in the above example,
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if the weather is warm and sunny), then the default
case task is run. Each case can be thought of as a verti-
cal column, and the selection process is deciding which
column to run. Since the first column which matches
will be run, the default case will always appear last.

19.4 Repetition Control Structures

Selection control structures used conditions to decide
which task to run. Repetition extends this idea to re-
peat a task (known as the loop body) while or until a
certain condition is met. It is essential that the task be-
ing performed can have some effect on the condition so
that the loop can reach termination, allowing the pro-
gram to continue.

Loop Body: the task(s) or
structures run repeatedly
while or until a condition is
met.

The various types of repetition structures seen in
flowcharts are based on where the condition is eval-
uated: it may be evaluated before the loop body
(pretest), after the loop body (post-test), or in the mid-
dle.

Infinite Loop: a loop whose
body does not change the
loop condition, causing
the loop to repeat continu-
ously, until the program is
manually terminated.

A pretest, or test at the top, style of loop is most com-
monly seen. This style checks the condition first. Only
if the condition is met does the loop body task get run;
otherwise, it is skipped. Thus, it is possible for the loop
body to never be run at all.

Iteration: a single run
through the loop body.

� Example 19.5 • In this example, we check if the
wood is rough. If so, we sand it, then check again. If
the wood was not rough (smooth) to start with, there is
no need to sand it.
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�

A post-test loop is used when the loop condition can-
not be checked until the loop body has run at least
once. The post-test (test at the bottom) style loop ap-
plies when the loop body must always be run at least
once.

� Example 19.6 • In this example, we need to mix
some batter until it is smooth. The check for lumpi-
ness doesn’t make sense until the first round of stir-
ring is complete; when the mixture is just poured, no
lumps exist. The first lumps don’t appear until the bat-
ter is first stirred. Thus, we use a test at the bottom
loop to ensure the mixture is stirred at least once be-
fore checked for lumps.

�

These two styles of loops can be combined with a test
in the middle loop style. Test in the middle allows the
loop body to be divided up into two portions, with the
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condition check occurring in the middle. This form is a
generalization of both pretest and post-test loop forms.

Always pay attention to
which branch is marked
“T” and which branch is
marked “F” when consid-
ering any selection or rep-
etition condition.

� Example 19.7 • For example, imagine we are wait-
ing for a very important call (for this example, assume
caller ID is not working). In that case, we would need
to answer every call. However, if the call received is
not the call we are waiting for, we would hang up to
continue waiting.

�

You may notice in the previous examples the loop ei-
ther continued when the condition is true, or contin-
ued when the condition is false. All three of these loop
forms may work either way. A loop that continues
when a condition is true is a “while” loop; a loop that
continues when a condition is false is an “until” loop.
Thus, we could have an “until pretest” style loop, or
a “while test-in-the-middle” style loop, or any other
combination.

A final repetition style sometimes seen in flowcharts is
the counting loop, also called a for loop. The count-
ing loop is used whenever a task needs to run a certain
number of times (a number either known in advance,
or determined before the loop through other tasks). To
perform a loop of this type, a counter is used to control
how many times the task is repeated.

Counter: a variable
changed by a fixed amount
at each iteration of a loop.
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�Example 19.8 • For example, we want to boil a dozen
eggs. The water pot has been prepared, now we need
to move each egg individually into the pot. There are
known to be a dozen eggs, so the “move egg” task will
repeat 12 times.

A counting loop is a special
case of pretest while loop.

In this diagram, the top left box (egg = 1) is an ini-
tialization task that occurs before the loop begins. The
larger box (egg <= 12) is the condition, with the T and F
branches coming out of it. After the egg is placed in the
pot, the upper right box (egg = egg + 1) increments the
counter before the condition is evaluated again. This
increment is technically part of the loop body and is
run at every iteration. �

19.5 Other Symbols

A flowchart must also clearly define what its source
data (input) is, and then what results (output) it pro-
duces. One way of doing this is with the Input/Output
symbol, represented as a parallelogram. This symbol
is used whenever values need to be transfered in or
out of the flowchart. Input values are specified with
“READ” or “INPUT” phrases, along with a variable
name or description of where the result will be stored.
Output values are specified with “WRITE” or “OUT-
PUT” phrases, along with the variable name that has
been prepared earlier in the flowchart and contains the
desired result.
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Here are several examples of Input/Output symbols.
The first one shows a single number being stored into
the variable number1.

It is also possible to handle lists or values, which can be
stored into a list variable. Operations on list variables
will be discussed in the next section.

Finally, results produced during the operation of the
flowchart are returned as result values.

� Example 19.9 • For example, consider the case of
finding the maximum of two numbers. We will need to
input the two numbers and then compare them to find
out which number is larger. There are three possible
cases:

1. The first number is larger.

2. The second number is larger.

3. The two numbers are equal.

The third case is sometimes called a “boundary case”,
“edge case” or “corner case”, indicating that it is a situ-
ation on the edge of the usual defined behavior. When
finding the larger of two numbers, what do we do if
the two numbers are equal?

Corner Case: occurs when
system input is technically
legal but unexpected, at the
edge of an allowable range,
or otherwise unusual.

It is important when developing an algorithm to con-
sider all corner cases. The act of breaking the algorithm
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down into flowchart level (or psuedocode) can help
discover such cases. In this example, when the num-
bers are equal, we will return either value (since they
are the same). This allows us to roll the equals case into
either of the larger cases, and the algorithm need only
handle two cases (when the first number is larger than
the second number, and “otherwise”).

The flowchart combines input, decision, and output to
complete a specific task. �

Dozens of other symbols
exist for use in specialized
flowcharts.

As mentioned earlier, each task block should be atomic.
However, once we have defined some process (such as
how to sort a list), we may want to be able to reference
that operation multiple times. The rectangle with ex-
tra bars on the sides is used to indicated a composite
task; a task that is not atomic but has been previously
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defined (either in flowchart or discussion) so there is
no ambiguity as to what and how the procedure is per-
formed.

At this point, it is becoming clear that flowcharts can
be confusing and difficult to understand. Fortunately,
explanations can be embedded into flowcharts. These
explanations, called comments, do not indicate any be-
havior but merely describe the thought process behind
some set of tasks, or indicate why a particular tech-
nique was chosen. To indicate that they do not effect
the outcome in any way, comments are indicated off to
the side of the main task flow line.

19.6 Managing Lists

A sequence of values in the form of a list is a common
basis for algorithmic problems. Many algorithms op-
erate on arbitrarily sized lists. There are two main ap-
proaches to handling list input: the entire list can be in-
put up front and then handled piecemeal, or each value
in the list can be input one at a time. Some algorithms
work better with one technique rather than the other.

A list is different from in a
set in two ways: a list has
ordering (first value, sec-
ond value, etc.) and a list
may have duplicates.

Although this text will fo-
cus only on lists for input,
the same two techniques
can be used to construct
lists for output.

When a list is read in up front, the list is managed by
manipulating selected elements in the list. The advan-
tage of this technique is that elements in the list need
not be read or manipulated in any particular order. The
disadvantage is usually increased complexity.

The list will be described with some variable (often just
list) and specific elements will be accessed by index
(position) in the list. The first position is usually 0. So
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the first element of the list is referred to as list[0]. A
variable such as count or size may be used to indi-
cate how many items are in the list. Given that the first
item has index 0, the last item will have index of one
less than count. So a list with five elements (count = 5)
will have indices 0, 1, 2, 3 and 4. We could reference
the last element in a list as list[count - 1].

On the other hand, the list can be handled by perform-
ing input within a loop. In this case, no overall “list”
variable is ever constructed. Instead, a loop continues
as long as more items remain in the list, inputting one
item at a time. A special variable called EOF (end of
file) or EOS (end of stream) is used to indicate when
there are no more items in the list. The loop continues
until EOF is true (or while EOF is false).

End of File: abbreviated
EOF or EOS (end of
stream), a Boolean condi-
tion that indicates when no
more values remain to be
read from a list.

In some cases, items in a list may need to be compared
to each other. Such a circumstance calls for a nested
loop. It is also common for a loop to add up or other-
wise aggregate the values in a list. A variable which
builds up a sum or other aggregation is called an accu-
mulator.

Nested Loop: a loop within
the body of another loop.

Accumulator: a variable
which stores intermediate
results of an aggregation,
usually a sum.

� Example 19.10 • For example, consider extending
the earlier example of finding the maximum of two val-
ues to finding the maximum value in a list. If the entire
list is input up front, then a counting loop over the in-
dices of the list can be performed (from 0 to count -
1, as described). In each iteration of the loop, the cur-
rent value in the list will be compared to the maximum
found so far, and if the current value is larger, it will
replace the maximum so far.

For this to work, some initial value of maximum so far
is needed. An initial guess might be to propose 0 as an
initial maximum, since it will be replaced by the larger
numbers as the algorithm progresses. However, what
if the list consists entirely of negative numbers? In that
case, an initial value of 0 for maximum will cause 0 to
be incorrectly returned as the actual maximum (since
0 is larger than all values in the list, it will never be
replaced). Thus, the only correct action we can take is
to select an actual value from the list to be the initial
value for maximum.
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Recall that each item in the list can be accessed by in-
dex (position), with the first item having index 0. In
this flowchart, we set the initial value of max to the
first item in the list list[0] and then loop through all
remaining items with a counting loop. We inspect each
item of the list one at a time using the counter variable
i, so that list[i] refers to the particular item being
inspected (depending on the value of i, it could be the
second, third, fourth, fifth, ... item).

Another way to approach this problem is to read each
value one at a time. In this case, a loop will check if
more values remain to be read. If so, the next value
will be read and compared to the current max, with the
max being updated if the read value is larger. As in the
previous version, the first value will be read before the
loop begins to establish a baseline max.

This version does not require any loop indices, so it
could be considered simpler. However, some opera-
tions (particularly those that aren’t a linear single pass
through a list) require that the entire list to be read in
advance, so being familiar with both techniques is ap-
propriate.
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Here both techniques are implemented as flowcharts
and compared side-by-side.

Read whole list up front Read one element at a time

�
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19.7 Functions and Reuse

In larger flowcharts, it is common to find sub-tasks
which may be needed in several places, or could be
conceptually extracted and used in other solutions. In
order to avoid overly complex flowcharts, it is best to
first define these subtasks, and then refer to them in the
main solution.

� Example 19.11 • For example, imagine we want to
take a list which has duplicates and produce a new list
of the same values but without duplicates. There are
several ways to accomplish this task. One straightfor-
ward way is to start with an empty new list, and take
the input one value at a time. For each value in the in-
put, check to see if it exists in the new list. If not, add it
to the new list.

Breaking down a large
problem into smaller
discrete pieces is almost
always a good technique.

In order to fully define the solution, we must under-
stand how to check to see if a value exists in a list. This
is a smaller problem which could be solved by itself in
preparation for solving the larger problem.

Flag: a Boolean variable
which indicates if a certain
condition has occurred.

To determine if a value exists in a given list (a problem
we’ll call “contains”), we can loop through each entry
in the list and check if it matches the desired value. If
so, a Boolean variable (acting as a flag) will be set to
true indicating the value has been found.

With the definition of “contains” so determined, we
can construct a solution to the original problem (re-
moving duplicates) by reference to the procedure con-
tains where needed. Dividing the original problem into
smaller parts makes it easier to solve and makes each
solution part easier to understand.
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Flowchart for “contains” Removing duplicates using “contains”

�



SECTION 19.8 | Logical Expressions and Set Extraction 217

19.8 Logical Expressions and Set
Extraction

Nested decisions may sometimes be transformed into
a single logical expression, or vice versa. The most reli-
able way to analyze these decisions is to create a truth
table indicating when a task is executed, and then de-
rived a simplified logical expression from that truth ta-
ble.

� Example 19.12 • The two decisions below are equiv-
alent.

Nested If Composite Expression

We can confirm this equivalence by creating a truth ta-
ble which shows under what conditions the task is ex-
ecuted.

Condition 1 Condition 2 Task
T T T
T F F
F T F
F F F

This truth table shows that the AND of both conditions
is sufficient to decide when to execute the task. �

However, we must be careful to ensure that the task,
when executed, is executed the same number of times
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in both cases. Or, if we can conclude that multiple ex-
ecutions of the task are irrelevant (for example, if it is
just setting a flag), only then can we ignore multiple
executions.

� Example 19.13 • For example, the following two
flowcharts are NOT guaranteed to be equivalent. The
reason is that, if condition 1 and condition 2 are both
true, one of the flowcharts executes the task once, and
one of the flowcharts executes the task twice.

Both true: executes Task twice Both true: executes Task once

�

However, if the task is simply setting a flag or some-
thing else that can be repeated without concern, then
the left flowchart could be replaced with the right
flowchart, and vice versa.

The easiest flowcharts to simplify are those that de-
pend entirely on Boolean inputs and set Boolean flags
as their only tasks. In this case, the flowchart can al-
ways be reduced to a single logical expression for each
flag set.

� Example 19.14 • For example, consider the follow-
ing flowchart.
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There are two variables (a and b) used in this
flowchart. The task sets the Boolean variable result.
Since all variables are Boolean, we can directly create
a truth table from this flowchart. In the table below,
result is shortened to r.

We start by setting up the truth table based on the vari-
ables in use.

a b r

T T
T F
F T
F F

Next, the left branch tells us that when a is true, then r
will be false, regardless of b.

a b r

T T F
T F F
F T
F F

What if a is false? Then a further decision is encoun-
tered: ¬b. Be careful with this one. The true branch will
be followed when ¬b is true, which only occurs when b
itself is false. Thus, when b is false, r will be false.
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a b r

T T F
T F F
F T
F F F

In the remaining case, r will be equal to b, according to
the flowchart.

a b r

T T F
T F F
F T T
F F F

Sometimes it is better to
leave more structure in the
flowchart to provide space
for comments and also to
decrease the amount that a
reader needs to understand
at one time. The final level
of simplification is a design
decision.

This truth table can be represented as the logical ex-
pression ¬a∧ b. Thus, it can be entirely replaced with a
single task based on this expression.

�

A similar technique can be used to determine which
elements exist in a given set expression. In order to
extract these elements, a loop over the universe of el-
ements is assumed. Next, for each set involved, a
Boolean variable is created indicating if the element is
a member of that set. Finally, a logical expression cor-
responding to the set expression is used to determine if
the element is a member of the set or not.

� Example 19.15 • For example, consider the set ex-
pression A ∩ B′. The equivalent logical expression is
a ∧ ¬b. Using a loop over the input, which is assumed
to be the universe, the following flowchart outputs all
elements in the set.
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�
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19.9 Exercises

Solutions to these exercises can be found in Appendix A.17 on page 355.

1. Problem: Convert the 12 eggs counting
loop example into pretest while loop
style.

2. Problem: Write a flowchart that calcu-
lates the average (mean) of a list of
numbers.

3. Problem: Write a flowchart that deter-
mines whether or not a given list of
numbers is in sorted order from small-
est to largest.

4. Problem: Write a flowchart that, given a
list, outputs the list in reverse.

5. Problem: The Fibonacci sequence is a
list of numbers, where each number is
derived by adding the previous two to-
gether. The first two numbers in the se-
quence are 1. The first eight Fibonacci
numbers are 1, 1, 2, 3, 5, 8, 13, 21.

Write a flowchart that given a position
number, outputs the corresponding Fi-
bonacci number. For example, if the
position is 1 or 2, the Fibonacci number
is 1. If the position is 6, the Fibonacci
number is 8, and so on.

6. Problem: Consider the Fizz-Buzz prob-
lem, a small programming challenge

proposed for use in job interviews.
Write a flowchart that prints the num-
bers from 1 to 100. But for multi-
ples of three print ”Fizz” instead of the
number and for the multiples of five
print ”Buzz”. For numbers which are
multiples of both three and five print
”FizzBuzz”.

7. Problem: Assume a, b and c are
Boolean variables; determine a logical
expression for the following flowchart.

8. Problem: Create a step-by-step ver-
sion of the flowchart from the previous
problem, using only one variable per
decision condition (in other words, no
AND or OR).



Chapter 20
Analysis of Algorithms

The purpose of using computers is to solve problems,
preferably more accurately and faster than a human
could solve them. For any given problem, there could
be multiple different solution techniques. Given a sin-
gle problem and many proposed solutions, how can
one solution be selected? Several factors may be in-
volved in such an evaluation:

• Cost to implement (time/expertise)

• Robustness (can it handle all the inputs?)

• Generality (can it solve other problems as well?)

• Maintainability (can it adapt to changes in the
problem?)

• Performance (how fast is it? how much memory
or disk space does it need?)

• And others...

Many of these considerations are part of a design and
systems analysis process. These considerations are
very important, but are largely people-driven and fall
outside the scope of this text. A review of Require-
ments Analysis and/or Systems Analysis is recom-
mended to the interested reader.

223
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For our purposes we will consider only the measure
of performance. Given a computational problem, it
is possible to devise multiple algorithms to solve it.
Some algorithms may run faster, or take less mem-
ory, than others. Algorithms which run faster and take
less memory can process larger amounts of data on the
same hardware, so it is advantageous to select them
when possible.

20.1 Performance Factors

Many factors influence the performance of a particu-
lar algorithm, on a particular computer, on a particular
set of data. For example, a faster computer might com-
plete the same algorithm on the same data in less time
than a slower computer. A computer running many
tasks at once might complete the same algorithm on
the same data in a longer time compared to a similar
computer whose only purpose is to run the algorithm.
The identical computer might even complete the iden-
tical algorithm with identical data in slightly different
running times, thanks to different CPU caching and op-
erating system behavior.

When evaluating algorithms for performance, we want
to exclude from consideration physical and environ-
mental factors which would influence any algorithm
put in the evaluation spot. It would not be beneficial
to compare two algorithms by running one on a slow
computer and the other on a fast computer. That eval-
uation is more likely to show which computer is faster
rather than to actually evaluate the algorithm.

In order to avoid biased measurements, algorithm per-
formance is not usually measured in terms of fixed
time, such as seconds; in a few years, a faster computer
will perform the algorithm in fewer seconds, so such
a measurement is not long-standing. In addition, the
measurement of seconds (or any other fixed time), is
influenced by environmental factors such as other pro-
grams running, the programming language used to im-
plement the algorithm, and component speed (mem-
ory speed, cache speed, etc.).
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20.2 Complexity Classes

Instead of time units, performance is measured us-
ing complexity classes. Complexity classes relate the
size of the input (how much work the algorithm is as-
signed) to how many steps the algorithm will take to
complete this work. This relationship is true regard-
less of environmental factors or hardware. This re-
sult is categorized into one of several broad complexity
classes, which emphasize which algorithms have very
different performance while grouping together those
whose performance is likely to be quite similar.

Complexity Class: formula
describing how the run-
ning time (or memory
usage) of an algorithm
changes relative to changes
in the size (or quantity) of
input.

The emphasis in complexity classes is: as the input
size grows, how much longer does the algorithm take
to complete? In the era of massive datasets, millions
of transactions per second, and an ever-growing need
to manage data in real time, the performance of algo-
rithms on very large input sizes is important. If we
know an algorithm’s complexity class, we can predict
how it will respond on a very large dataset, even if we
have never run the algorithm.

Defining input size is im-
portant. The complexity
class of an algorithm de-
pends on the definition of
the input size, and may
change if the definition of
input size is changed.

One difficulty with complexity classes is defining input
size. For an algorithm which sorts data, the input size
is straightforward: how many items are there to sort?
For an algorithm which searches documents, the input
size could be trickier. It could be how many documents
exist to be searched, or the total length of all documents
to be searched, or the number of search terms in use, or
some combination thereof.

Big-Oh: short for “biggest
order”, indicates the most
significant complexity
term, with coefficients
dropped.

Complexity classes are also represented in terms of
what scenario they represent (best case, average case,
or worst case being the most common). We will gener-
ally focus on worst case scenarios, and represent com-
plexity using Big-Oh notation, which shows only the
most significant term.

Linear Search: checking
each element in a sequence
one at a time, from be-
ginning to end, until the
desired element is found or
the end is reached.

Imagine a stack of unsorted papers. We are looking for
a particular one. An algorithm to find this paper, if it
exists, is to start at the beginning, and look at each pa-
per in order, until either the end is reached or the paper
in question is found. This algorithm is known as linear
search. In the best case, the paper might be right on
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top: in which case only 1 step was needed. In the aver-
age case, the paper might be somewhere in the middle,
in which case we would have to look through about
half of the papers to find it. This takes

n

2
steps if there

are n papers (notice here we have defined number of
papers as the input size). In the worst case, the desired
element will be the last one we check, or it might not
be present at all. In this case, we have to check all the
papers. Focusing on worst case, we would say that the
algorithm linear search is O(n), because up to n steps
may be needed to find the result.

An algorithm whose worst
case running time is repre-
sentable by O(na) for any
constant a, is a polynomial
time algorithm.

Complexity classes are often divided into two cate-
gories: polynomial, and worse than polynomial. Algo-
rithms which exhibit worse than polynomial running
times are usually considered intractable, that is, unus-
able on datasets of any practical size.

Here are some common complexity classes with
names. The top part are polynomial classes; the bot-
tom part shows worse than polynomial classes.

Name Big-Oh Notation When the Input Size Doubles, the Time Taken...
Constant O(1) stays the same
Logarithmic O(log n) increases slightly
Linear O(n) doubles
Quadratic O(n2) quadruples
Cubic O(n3) is eight times longer
Name Big-Oh Notation When the Input Size Increases by 1, the Time Taken...
Exponential O(2n) doubles
Factorial O(n!) is n times longer

20.3 Binary Search: A Practical Ex-
ample

Imagine we have an application that, at some point, re-
ceives a list of sorted values. The application wants to
determine if a certain query value is or is not present
in the list. How can this be accomplished? Two algo-
rithms come to mind: we could use the linear search al-
gorithm, discussed previously. Alternatively, because
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the list is already sorted, a binary search could be em-
ployed.

Binary Search: a search
technique for ordered lists
which cuts the search space
in half at each space.A binary search works on a sorted list by first examin-

ing the middle element in the list. If the middle element
is the desired result, the search stops. If the middle el-
ement is less than (appears before in sorted order) the
desired result, the bottom half of the list is discarded
and the procedure repeats. If the middle element is
greater than (appears after in sorted order) the desired
result, the top half of the list is discarded and the pro-
cedure repeats. At each step, half of the remaining list
is thrown away, until the result is found or no more list
remains.

Consider the following example of binary search in ac-
tion. Assume we are looking for the number 3. At each
step, the middle element will be selected, and then half
of the list will be discarded. When only two items re-
main, they will be compared individually in sequence.

1 3 4 4 5 6 6 7 8
1 3 4 4 5 6 6 7 8
1 3 4 4
1 3 4 4
1 3
1 3

The result was found in six steps (if comparing and
discarding count as two steps). Performing this same
search using the linear search algorithm yields:

1 3 4 4 5 6 6 7 8
1 3 4 4 5 6 6 7 8

The result was found in only two steps! Does this mean
the linear search algorithm is our algorithm of choice
for the application?

Algorithm performance at
fixed input sizes is irrele-
vant to complexity analy-
sis. Only the change in time
or space needed as the in-
put size grows is consid-
ered.

Not necessarily. We have shown that the linear search
algorithm performed better in one specific case. How-
ever, we need to know what the worst case scenario
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is as the input size grows. It is unlikely that our ap-
plication, if it enters heavy use, will be content with
searching lists of less than ten elements. How will these
searches perform on lists of a million elements, for ex-
ample?

The times shown here are
actual measured times.
These times do not exactly
follow the complexity
classes of the algorithms
due to the aforementioned
environmental factors. Running an actual test case on a computer is instruc-

tive, although we must be careful of environmental im-
pacts, and the limited ability of computers to measure
very quick events. Running these two techniques on a
million elements generates a time of 0.019 seconds for
the linear search, and 0 seconds for the binary search.
Of course, the binary search didn’t really complete in
zero seconds, it was simply faster than the computer
was able to measure.

Both of these times seem very, very fast. So is there
any reason to choose one search over another, from a
performance point of view?

Increasing the input size to 10 million yields an inter-
esting result. The linear search now completes in 0.352
seconds, whereas the binary search still shows 0 sec-
onds. If 100 million elements need to be searched, the
linear search now takes 3.555 seconds, whereas the bi-
nary search still shows zero.

These examples were performed using integer num-
bers, which are very easy for a computer to compare.
If the lists consisted of some more complex compo-
nent, which took much longer to compare, the results
would be even more dramatic: as the input size in-
creases, binary search remains very fast, whereas linear
search time increases with the input. A complete bi-
nary search of one million elements takes only 27 divi-
sions, whereas a linear search of that same space could
take up to one million steps.

Linear search was already concluded to be O(n); bi-
nary search is O(log n), a better complexity class, which
shows faster times as the input size increases.
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20.4 Step Counting

Given an algorithm, how can the time complexity be
found? It is possible to measure actual times taken, and
fit them to one of the curves. However, this technique
is quite error prone. A cleaner technique, although one
with its own limitations, is step counting. In this tech-
nique, an algorithm is run by hand with several small
inputs, and a relationship between input size and num-
ber of steps is established.

In order for step counting to work properly, each
“step” (or action) must itself be constant time, or
atomic. If we perform a large and input-dependent op-
eration, like “sort the list” or “find the smallest num-
ber” as one step, the count will not accurately reflect
the algorithm’s time complexity.

� Example 20.1 • Consider the example of binary
search. A binary search of two elements:

a b
a b

Takes at most two steps. A binary search of three ele-
ments:

a b c
a b c
a

Takes at most three steps. A binary search of four ele-
ments:

a b c d
a b c d
a b

a b

Takes at most four steps. A binary search of five ele-
ments:
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a b c d e
a b c d e
a b

a b

Takes at most four steps. This is the first indicator we
have that binary search may be better than linear time!
A binary search of six elements:

a b c d e f
a b c d e f
a b c
a b c
a

Takes at most five steps. Jumping forward, we also
found that a binary search of eight elements was com-
pleted in six steps.

Thus, the number of steps required for a binary search
can be closely approximated by 2 log2 n + 2 for n ele-
ments. When translating this value into Big-Oh nota-
tion, only the largest term is kept, and any coefficients
are dropped. Therefore, binary search has O(log n)
time complexity. �

20.5 Loop Analysis

An alternative to time consuming (and sometimes am-
biguous) step counting is loop analysis. In order for
the time an algorithm takes to increase with increased
input size, the increased input size must result in ad-
ditional work. This work often appears in the form of
repetition, such as loops. By inspecting an algorithm
for repetition, the time complexity can often be found.

Be sure to inspect the algo-
rithm for hidden complex-
ity, like sorting, that may
incur a substantial time
complexity.

Sorting incurs O(n log n)
time complexity.

Care must be taken when analyzing an algorithm in
this manner to ensure that all operations are accounted
for. As in step counting, each action should be constant
time and atomic.
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To perform a loop analysis, look for repetition in an al-
gorithm. Any part of an algorithm which is repeated
forms a loop. This can be clearly seen on flowcharts
with “circular” regions. An algorithm which consists
of no repetition is constant time, O(1). Repetition
which is not based on the size of the input (for exam-
ple, “repeat this operation five times”) is also constant
time: as the input size grows, the number of steps will
not change.

If all loops are linear on the
input, then nested loops
k levels deep have O(nk)
time complexity.

Most repetition, however, is based on input size. A
loop which reduces remaining input by a constant
(usually 1) at each step is a linear time, O(n) loop: it
will perform the inner body once for each block of in-
put. In order for the algorithm to be entirely O(n) the
contents of the loop body must run in constant time. If
there is a loop (based on input) within a loop, then the
algorithm is likely quadratic O(n2).

If the loop cuts the input in half at each step, then dou-
bling the input size is required to add an extra iteration
to the loop. This results in O(log n) time complexity. Bi-
nary search divides the input in half at each step, and
has O(log n) time complexity.

Loops which make less progress, or generate more
work as they go along, may be in the higher time com-
plexities.

Loops performed in sequence (one after the other) are
addition, and so only the worst loop will decide the al-
gorithm’s time complexity. For example, imagine an
algorithm which first had a loop that stepped through
each item in the list one at a time, next it performed
a nested loop, then another nested loop, and finally a
binary search. The time complexity of that algorithm
is O(n + 2n2 + log n) = O(n2). The smaller terms fall
away, and only the most significant term (without co-
efficients) remains.
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20.6 Comparison of Complexity
Classes

How much worse is a quadratic algorithm compared to
a linear algorithm? The answer is “it depends”. Time
complexity tells us only how the time taken changes as
the input size increases: it does not guarantee which al-
gorithm will be faster at a certain input size. With small
inputs, the quadratic algorithm could even be faster.
As the input size grows, however, the quadratic algo-
rithm will soon take longer than the linear algorithm.

The following graph shows examples of time taken for
an algorithm of each class. Notice that, for small in-
puts, there is no clear relationship between time com-
plexity and time taken. However, as the input size in-
creases, the worse time complexities take longer.

In the above graph, it is clear that quadratic and expo-
nential algorithms become very expensive (take a long
time) even with small increases in input size. To ap-
preciate this cost, and to compare these two classes,
the same graph is presented again. In this case, we
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have adjusted the “time required” axis only. Notice all
the sub-quadratic time complexities blur together, and
quadratic and exponential are both dominating, with
exponential quickly exceeding even the increased chart
bounds. By the right-hand edge of the chart, the expo-
nential algorithm incurs over three million steps.

It is important to distinguish an algorithm from a prob-
lem. Algorithms have time complexities; problems do
not. However, for any given problem, there is usually
a “best” known algorithm. The time complexity of a
problem is often given as the time complexity of the
best known algorithm; however, it is possible in the fu-
ture that better algorithms could be devised and reduce
the time complexity for the problem.

A full discussion of the
time complexities and
techniques of various sort-
ing algorithms, provided
with animated visualiza-
tions, can be found at
http://www.sorting-
algorithms.com/

The complexity of
O(n log n) is slightly worse
than O(n) but much better
than O(n2).

Programmers run afoul of time complexity in two com-
mon cases: sorting and optimization. A variety of
sorting algorithms exist, and many have a worst case
time complexity of O(n log n). Rather than use well
designed sorting algorithms built-in to a language,
programmers sometimes re-implement their own ap-
proach to sorting, often poorly.

� Example 20.2 • Consider the following algorithm:

http://www.sorting-algorithms.com/
http://www.sorting-algorithms.com/
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1. Start at the first item in the sequence.

2. If this item belongs after the next item, swap
them.

3. If there are more items, go the next item and step
2.

4. Otherwise, if any swaps have been made since
step 1, go back to step 1.

This algorithm performs a loop over all inputs, but
repeats that loop potentially many times (until every-
thing is sorted). An item, at most, would have to move
from the start to the end to be fully sorted, so each loop
could occur up to n times (where n is the number of
elements in the input). Nested loops, each dependent
on the input, give O(n2) time complexity. �

The time complexities of O(n log n) and O(n2) may
sound similar, but O(n log n) is much closer to linear
than to quadratic; compare the linear and quadratic
time lines on the previous graph.

The moral of the story
is: unless you really know
what you’re doing, stick
with the built-in language
sorting features.

Sorting algorithms with poor time complexities may
still be chosen in certain cases, depending on the appli-
cation. For example, the algorithm shown above per-
forms reasonably well (near O(n)) if the input is nearly
sorted and needs only a few minor corrections. Quick-
sort, which has a worst case time complexity of O(n2)
is very popular because its actual performance time on
real world data tends to beat sort algorithms which
have better theoretical limits.

Optimization is another area where programmers run
into trouble. Most algorithms that solve optimization
problems are both fairly simple to write and very bad
in time complexity.

� Example 20.3 • Consider the case of a delivery com-
pany which wants to minimize the amount of driving
necessary to deliver packages. Each day, a list of deliv-
ery addresses is available; as are the distances between
addresses. An algorithm to find the shortest sequence
of addresses would be nice.

Traveling Salesman Problem:
an optimization problem
which requests the ideal
route between a series of
locations.
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A straightforward approach is to consider all possibili-
ties: For the first stop, there are n possibilities. For the
second, n − 1, and so on. This gives a total of O(n!)
possible routes; to consider each route and find the
shortest then takes O(n!) time; worse than exponential!
Applying more insight to the problem produces an im-
proved algorithm, but even the best known algorithm
for this problem is O(2n). This particular optimization
problem, known as the Traveling Salesman Problem,
is frequently encountered in a variety of optimization
situations. The best-known time complexity for a solu-
tion to this problem means, in practice, that finding an
optimal solution is almost always impractical. �

Heuristic: an algorithm that
approximates a solution,
usually in much less time
than it would take to find
an exact solution.

More complicated yet computationally practical ap-
proaches involve heuristics. Heuristic algorithms do
not attempt to find the optimal solution; they find a
good solution (for various definitions of “good”) in
much faster times. Considering the delivery driver ex-
ample, it is not essential that the driver be assigned the
best possible route. A slightly less optimal route may
be necessary to allow routes to be computed in a rea-
sonable amount of time.
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20.7 Exercises

Solutions to these exercises can be found in Appendix A.18 on page 367.

1. Problem: Two algorithms have been
created to process input records. The
first algorithm processes 100 records
in 13 seconds. On the same com-
puter, the second algorithm processes
100 records in only 8 seconds. Which
algorithm will perform faster on 200
records?

2. Problem: One algorithm was step-
counted and found to complete in 4n+
n2 + log n steps (with input size n).
A second algorithm was step-counted
and found to complete in 2n3 + 4 steps
(with input size n). Which algorithm
has the better time complexity?

3. Problem: Find the time complexity of
the following algorithm:

(a) Input a and b as positive whole
numbers

(b) Let n be the larger of a and b

(c) If a÷ n is a whole number, AND

(d) If b ÷ n is a whole number, return
n as the answer.

(e) Otherwise, modify n = n− 1

(f) Go to line (b)

4. Problem: Find the time complexity of
Euclid’s Algorithm.

5. Problem: Find the time complexity of
the following algorithm:

(a) Let itemi represent the ith item in
a list of n numbers, with item0 be-
ing the first element.

(b) Let k = 0

(c) If k = n then return true

(d) Let z = 0

(e) If z = k then go to line (i)

(f) If itemz > itemk then return false

(g) Update z = z + 1

(h) Go to line (e)

(i) Update k = k + 1

(j) Go to line (c)

6. Problem: Devise an alternative, more
efficient, algorithm which computes
the same result as the algorithm given
in the previous problem. Find the time
complexity of the improved algorithm.

7. Problem: Your company has a records
processing algorithm which runs
overnight to process the day’s sales.
When the algorithm was first imple-
mented, there were about 20 sales a
day, and the algorithm took about five
minutes to run. A few months later,
daily sales averaged about 100 per day,
and you notice the algorithm is now
taking about two hours to run. The
newly hired sales manager claims she
can triple the company’s sales. If she
does, will the algorithm still finish in
time for business open at 8:00AM if it
is started at 5:00PM when the business
closes?
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8. Problem: Given the previous solution,
Mike the IT guy notes that all sales
are currently being processed on one
server. He proposes buying several
more servers (which perform at the
same speed as the current server) to
distribute the load.

(a) Assuming the load can be equally
distributed between servers, how
many servers would be required
to complete the job in time?

(b) If the total sales per day increases
to 400, how many servers would
be required to complete the job in
time?
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A.1 Sets

Exercises found in Chapter 1 on page 8.

Assume A = {1, 2, 3}, B = {2, 3, 4}, C = {4, 5, 6}, D = {1, 3, 5}, U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

1. Problem: Find the set described by A ∪ (B ∩D′)′.

Solution: Keep order of operations in mind, and solve.

(a) A ∪ (B ∩D′)′

(b) {1, 2, 3} ∪ ({2, 3, 4} ∩ {1, 3, 5}′)′ (insert set definitions)

(c) {1, 2, 3}∪({2, 3, 4}∩{2, 4, 6, 7, 8, 9, 10})′ (parentheses first, and then complement inside)

(d) {1, 2, 3} ∪ ({2, 4})′ (parentheses first)

(e) {1, 2, 3} ∪ {1, 3, 5, 6, 7, 8, 9, 10} (complement)

(f) {1, 2, 3, 5, 6, 7, 8, 9, 10} (union)

Therefore, A ∪ (B ∩D′)′ = {1, 2, 3, 5, 6, 7, 8, 9, 10}. Everything in the universe except the 4.

2. Problem: Find the set described by A ∪B ∩D.

Solution: Keep order of operations in mind. Intersection has a higher precedence than
union, so (in the absence of parentheses) complete the intersection first.

(a) A ∪B ∩D

(b) {1, 2, 3} ∪ {2, 3, 4} ∩ {1, 3, 5} (insert set definitions)

(c) {1, 2, 3} ∪ {3} (intersection first)

(d) {1, 2, 3} (then the union)

Therefore A ∪ B ∩ D = {1, 2, 3}. Note that attempting to solve using a different order of
operations would cause a different result. Always put parentheses around an expression if
the order may be unclear.

3. Problem: Determine if A ∩B ⊂ B ∪D.

Solution: Keep in mind that proper subset ⊂ requires that all elements on the left appear on
the right, and also that the right must have at least one additional element.

(a) A ∩B ⊂ B ∪D

(b) {1, 2, 3} ∩ {2, 3, 4} ⊂ {2, 3, 4} ∪ {1, 3, 5} (insert set definitions)

(c) {2, 3} ⊂ {1, 2, 3, 4, 5} (perform intersection and union)
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(d) {2, 3} ⊂ {1, 2, 3, 4, 5} (check if all elements on the left appear on the right; plus at least
one more element on the right)

The two and three appear on the right, and the right side has at least one additional ele-
ment, so A ∩B ⊂ B ∪D.

4. Problem: Find |A ∩ C|.
Solution: The vertical bars indicate that the cardinality, that is, number of elements in the
set, is desired. We must first find the contents of the set, and then count them.

(a) |A ∩ C|
(b) |{1, 2, 3} ∩ {4, 5, 6}| (insert set definitions)

(c) |∅| (perform intersection)

(d) 0 (count the number of items in the set - the empty set has no items)

Therefore, |A ∩ C| = 0.

Assume M = {x : x is a math student}, C = {x : x is a CIS student}, and V = {x : x plays
videogames}. Let U = {x : x is a student at the college}. Note that all sets must be subsets of the
universe, so in this case the set V implicitly is limited to only those students at the college who
play videogames; not videogame players outside the college.

5. Problem: Write a set expression which gives the set of all CIS students who play
videogames.

Solution: We recognize that CIS students are represented by C, and that videogame players
are represented by V . The question asks for the result to be a set, so the standard set op-
erators of union, intersection, and complement are available. There are two main ways to
combine these sets: C∪V or C∩V . The first, union, indicates all CIS students (regardless of
whether or not they play videogames) together with all videogame players (regardless of
whether or not they are CIS students). This would not be the correct set. The second, inter-
section, indicates all CIS students who also play videogames, which is what the problem
asked for.

Therefore, the set of all CIS students who play videogames is represented by C ∩ V .

6. Problem: Write a set expression which gives the set of all students who play videogames
and are either math or CIS students, or both.

Solution: In this case, we can break the problem down into parts. The first part “play
videogames” suggests the set V . The second part ”either math or CIS students, or both”
suggests the use of the union operator with the sets M and C. Finally, the ”and” which
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connects them together requires that the student be a member of both subparts to be part
of the whole, so we’ll use the intersection operator.

Therefore, the set of all students who play videogames and are either math or CIS stu-
dents, or both is represented by V ∩ (M ∪ C). Because intersection and union have the
same precedence, the use of parentheses here is important. If parentheses were not used,
the expression would actually describe videogame players who were also math students,
together with all CIS students.

7. Problem: Write a set statement which indicates that all CIS students play videogames.

Solution: Notice the phrasing of this problem is different. We are no longer looking for
a set; we are now looking for a truth claim. This requires the use of equality or subset
operators to make a claim about two related sets. It is important to note the directionality
of this statement: all CIS students play videogames, but not all videogame players are CIS
students (at least, we can’t assume so at this time). This means that every member of the set
CIS students must also be a member of the set videogame players. This denotes a subset
situation.

Therefore, we can indicate that all CIS students play videogames by claiming that C ⊆ V .

8. Problem: Write a set statement which indicates that some math students don’t play
videogames.

Solution: The word “some” means one or more, or “there exists”. The statement must
claim that there is some element that is both in the math students set and in the don’t play
videogames set.

The math set is represented by M , and the don’t play videogames set is V ′. Notice the use
of ′ to indicate complement; that is, all students who DO NOT play videogames. Now we
must claim that there is at least one member in common between these sets. If we intersect
them, then the result must not be empty.

Therefore, we can indicate that some math students don’t play videogames with M ∩ V ′ ̸=
∅.

Alternative Solution: If we consider the set of math students, there must be at least one who
is not in the set of videogame players. Thus, it is not possible that math students could be
a subset of videogame players. By refuting such a subset, we can enforce the same claim:
that some (at least one) math students don’t play videogames.

Therefore, we can indicate that some math students don’t play videogames with M ̸⊆ V .
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A.2 Counting

Exercises found in Chapter 2 on page 18.

1. Problem: Sam buys a box of mixed chocolates. The box contains 3 nut varieties, 5 truffle
varieties, 3 caramels, and 2 hard chocolates. Suzie opens the box first and eats 4 chocolates;
but she doesn’t like truffles or hard chocolates, so she won’t eat any of those. Sam doesn’t
like nut varieties or hard chocolates. How many chocolates are left that Sam might like?

Solution: Given that Suzie doesn’t like (and won’t eat) truffles or hard chocolates, that
leaves nut varieties and caramels. There are only three caramels in the box, so even if she
ate all three she would still have eaten one nut variety. The other extreme is that she ate all
three nut varieties and then had just one of the caramels.

Sam will eat only truffles and caramels. Since Suzie doesn’t like truffles, we know that all
the truffles must remain. That’s five.

Of the caramels, Suzie may have eaten at least one and at most all three of the caramels,
leaving between zero and two caramels remaining. That leaves a total of five to seven
chocolates that Sam might like.

2. Problem: Given that |A| = 5 and |B| = 11, but not knowing the details of the contents, what
is |A ∩B|?
Solution: In this case, we are given only the cardinality but not the contents of the two
sets, and are asked to find how many elements will appear in the intersection. There are
two extremes: In one case, A ⊂ B, that is, every element in A appears in B. In that case,
A ∩B = A. We already know that |A| = 5.

In the other extreme, the sets may be disjoint. In that case, A ∩ B = ∅. We know that
|∅| = 0. The intersection set cardinality must be between zero and five, inclusive.

Therefore, 0 ≤ |A ∩B| ≤ 5.

3. Problem: Given that |A| = 4 and |B| = 6, but not knowing the details of the contents, what
is |A ∪B|?
Solution: Likewise, again, we are given only the cardinality but not the contents of the
two sets, and are asked to find how many elements will appear in the union. There are
two extremes: In one case, A ⊂ B, that is, every element in A appears in B. In that case,
A ∪B = B (because duplicates don’t exist in sets). We already know that |B| = 6.

In the other extreme, the sets may be disjoint. In that case, the union of A and B will be a
set consisting of all elements in A, and then all elements in B. In other words, if A and B
are disjoint, then |A ∪B| = |A|+ |B|. So at most the union could have 10 elements.

Therefore, 6 ≤ |A ∪B| ≤ 10.
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Alternative Solution: Recall the formula |A ∪ B| = |A| + |B| − |A ∩ B|. In this case, |A| and
|B| are known, so we must determine |A∩B|. In a similar way to the previous exercise, the
range of an intersection is from zero to the number of elements in the smaller set. In this
case 0 ≤ |A ∩ B| ≤ 4. Starting with |A|+ |B| = 10, and subtracting the range given to both
sides, we find 6 ≤ |A ∪B| ≤ 10.

4. Problem: An IPv4 network address consists of 32 bits. Each bit has two possibilities (0 or 1).
What is the maximum theoretical number of possible IPv4 addresses?

Solution: The two questions here are order and repetition. Both are yes: order is important
because the defined address is based on the bit sequence. Like house addresses, the address
number 123 would be different from 321. Repetition is also essential, as we are choosing
32 items from a pool of only 2 (each bit has two possible values).

Choosing permutations with repetition gives us the formula nr, where n = 2 and r = 32.
Therefore 232 = 4294967296.

Note: in practice, fewer addresses are available due to certain ranges being classified for
special or restricted use.

5. Problem: There are 6 boxes numbered 1, 2, 3, 4, 5, and 6. Each box is to be filled up either
with a red or a green ball in such a way that at least 1 box contains a green ball and the boxes
containing green balls are consecutively numbered. How many different arrangements are
possible?

Solution: A reasonable approach to this problem is to examine what kind of assumptions
we can make. For example, we know that at least one green ball exists, and that all the
green balls are together. Therefore, we can represent the green balls as a starting position
and a length. All other balls will be red.

The valid lengths are 1 through 6 (one being the minimum number of green balls, and six
meaning every spot has a green ball). The valid starting positions vary based on the length:
When the length is 1, then any of the six boxes are valid starting positions. When the length
is 2, only boxes one through five are valid starting positions. Finally, when the length is 6,
only box 1 is valid for starting.

In this way, we can use the additive counting rule to combine these options, since exactly
one is chosen. For each length 1 through 6, we’ll add the possible number of starting
positions, giving us 6 + 5 + 4 + 3 + 2 + 1 = 21.

6. Problem: How many different four letter words can be formed (the words need not be
meaningful) using the letters of the word MEDITERRANEAN such that the first letter is E
and the last letter is R?

Solution: One key assumption that we must make is whether or not we are allowed to use
a letter more times than it appears in the original word. For example, is ETTR a valid
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answer? (Note there is only one T in the original word). For this exercise, we’ll assume
that letters are not usable more times than they appear in the original.

Given that the new word must start with E and end with R, we really have two spaces to
fill in, and we must take away an E and an R from the original word, giving us MDITER-
ANEAN. (I removed the first E and the first R, although any single of each is possible).

We now have eleven letters remaining, and two spots to fill. Repetition is not allowed
(because each letter from the original word can only be used once) and order is important.
That gives us permutations without repetition. However, if we were to choose two of the
same letter (possible only with E, A, or N), then that should be counted as one possibility,
but a naive permutation approach will count them as two possibilities (e.g. EAAR with the
first A and then the second A, and EAAR with the second A and then the first A).

To solve this problem, we will count the duplicate letter case separately, and reduce our
original word to MDITERAN. We can now use the permutation without repetition formula,

finding that
n!

(n− r)!
=

8!

(8− 2)!
=

8!

6!
= 8 ∗ 7 = 56.

We need to add in the duplicate letter cases. There are three: EAAR, EEER, and ENNR.
Therefore, we find a total of 59 possible arrangements.

7. Problem: How many ways can a class of six people be split into two equal groups if there is
no distinction between the groups?

Solution: In this case, there is no labeling of the groups (e.g. group A or group B), so
the partition formula won’t work as-is. The reason for this is that if we have the groups
A = {1, 2, 3} and B = {4, 5, 6}; compared to A = {4, 5, 6} and B = {1, 2, 3}, these are the
same two groups, but the partition formula would consider them different.

However, notice that every group selection has a “mirror image”. So we could use the
partition formula and then divide the number of results in half to eliminate the mirror
image.

The partition formula is
n!

r1! ∗ r2! ∗ r3! ∗ ...
. In this case, n = 6, r1 = 3, and r2 = 3. This meets

the requirement that n = r1 + r2.

6!

3! ∗ 3!
=

6 ∗ 5 ∗ 4
3!

= 20. Cutting the result in half gives us 10 possible arrangements.

Alternative Solution: We can select, without ordering or repetition, three members of the
class to form one group using the combinations without repetition formula. Again, we
must divide the total number of possibilities in half to counter the effect where students
{1, 2, 3} are selected and {4, 5, 6} are not; this is the same as {4, 5, 6} being selected and
{1, 2, 3} not.

Combinations without repetition uses the binomial coefficient formula
(
n

r

)
.
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(
n

r

)
=

(
6

3

)
=

6!

3! ∗ (6− 3)!
=

6!

3! ∗ 3!
=

6 ∗ 5 ∗ 4
3!

= 20. Cutting the result in half gives us 10

possible arrangements.

8. Problem: A restaurant offers the following menu: select either an entree or a burger. There
are three entrees available, and each entree comes with two sides. There are four sides to
choose from. We can choose two of the same side, if desired. If we choose the burger, on
the other hand, there are five different burgers available, but burgers do not come with any
sides. How many different selections are possible?

Solution: Divide the problem into two parts: the entree part and the burger part. Because
we are choosing one from this group, we will combine them with the additive counting
rule. The entree part consists of one of three entrees and two of four sides.

Two of four sides is the interesting part: in this case, we have been told that repetition is
allowed, and we can assume that order does not matter (since the sides come together).

Therefore, we choose combinations with repetition, represented by
(
n+ r − 1

r

)
. In this

case, n = 4 and r = 2. Therefore,
(
4 + 2− 1

2

)
=

(
5

2

)
=

5!

2! ∗ (5− 2)!
=

5!

2! ∗ 3!
=

5 ∗ 4 ∗ 3!
2! ∗ 3!

=

5 ∗ 4
2!

=
20

2
= 10.

There are ten different ways of selecting the sides. Working backwards, there are three
entrees, and we are selecting one, so there are just three possible choices. Because we
choose one entree and one of the ten ways of choosing sides, there are a total of 3 ∗ 10 = 30
ways of choosing an entree and sides. If we choose a burger instead, there are five burgers.

So the total number of possible menu choices is 35.
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A.3 Venn Diagrams

Exercises found in Chapter 3 on page 26.

1. Problem: Draw a Venn diagram to visualize A′ ∪B′ ∩ C.

Solution: In the usual order of operations, we will first investigate the intersection to solve
B′ ∩ C.

First, find the inner-
most set B:

The complement is
the next step, so fill
in the opposite of
everything that was
filled in before:

Separately, find the
set C:

Intersect the previ-
ous two sets to find
B′ ∩ C:

Solving the left por-
tion, find the set A:

The complement
will be everything
except A:

Now union the A′

set with the previ-
ous B′∩C set for the
final answer:

2. Problem: Determine if A′ ∩B′ = (A ∪B)′.

Solution: Equality of set expressions can be determined by drawing a Venn diagram for
each set expression in question. If the two Venn diagrams are the same, then the set ex-
pressions are equal; otherwise they are not equal.

First, we will find the Venn diagram for A′ ∩B′.
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First, find the inner-
most set A:

The complement is
next step, so fill in
the opposite of ev-
erything that was
filled in before:

Separately, find the
set B:

Likewise, find the
complement of B:

We can intersect the two results, A′ and B′, to find all areas that exclude both A and B:

Now, let’s find the Venn diagram for (A ∪B)′ and see if it is the same.

First, find the inner-
most set A:

Separately, find the
set B:

Next, union the two
sets: B:

Finally, invert the
last diagram to ap-
ply the complement:

Note that both final diagrams are the same. Therefore, the two expressions A′ ∩ B′ and
(A ∪B)′ are equal. This equivalence is called DeMorgan’s Law.

Let the universe be customers of a bank. Let the set A = {x : x has a savings account}, B = {x : x
is a preferred customer}, and C = {x : x has a checking account}.

3. Problem: Draw a Venn diagram illustrating preferred customers who don’t have a savings
account.
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Solution: First, start with all preferred customers. Note the overlap with A is those cus-
tomers who are preferred and also have a savings account. The overlap with C is those
customers who are preferred and also have a checking account. The triangle area in the
middle is preferred customers who have both a checking and savings account.

The problem asks for those preferred customers who do not have a savings account, so we
must reduce this diagram by excluding the savings account holders. Both the top overlap
with A and the middle triangle include savings account holders, so we will remove those
from the diagram:

Alternative Solution: Convert the English sentence into a set expression. We find preferred
customers B and those who don’t have a savings account as A′. The problem wants both
preferred AND no savings account, which gives us B ∩ A′.

First, find the inner-
most set B:

Separately, find the
set A:

Find the comple-
ment of A:

Combine B and A′

with an intersection:



SECTION A.3 | Venn Diagrams 251

4. Problem: Draw a Venn diagram illustrating non-preferred customers, except those who
hold both a checking and savings account.

Solution: First, start with the customers who are not preferred. These are customers outside
of the preferred set B:

The next phrase starts with “except”, which means we will be further reducing the set as
shown above. We want to remove those who hold both a checking and savings account.
This is a simple matter of removing the wedge where A and C overlap, as this indicates
the customers who have both types of accounts:

Alternative Solution: Convert the English sentence into a set expression. First, we will trans-
form the English slightly to identify the two main parts: non-preferred customers, and cus-
tomers who hold both a checking and savings account. The non-preferred customers are
B′, and the customers with both accounts can be represented by an intersection: C ∩ A.

These are combined with “except”, which indicates set difference (that is, non-preferred
customers minus customers who hold both a checking and savings account). So our ex-
pression at this point is B′ \ (C ∩ A).

Recalling that set difference is defined as A \ B = B′ ∩ A. Plugging our sentence above
into this definition gives a final set expression of (C ∩A)′ ∩B′. We can now draw this Venn
diagram in the usual way:
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First, find the inner-
most set C:

Separately, find the
set A:

The intersection of
these two is C ∩ A:

Take the comple-
ment of this result
to find (C ∩ A)′:

Now, find the set B: The complement of
this set is B′:

Combine B′ with
(C ∩ A′) from the
previous line using
intersection:

5. Problem: Determine a set expression that matches the following Venn diagram:

Solution: A reasonable way to approach this type of problem is to consider which parts of
each set, if any, are included in the diagram.

For the set A, we find that only the parts where A overlaps with B, or where A overlaps
with C, are included. Notice the central triangle is excluded, so when B is included, C
must be excluded; likewise, when C is included, B must be excluded. We can write that
portion as a set expression: (A ∩B ∩ C ′) ∪ (A ∩ C ∩B′).
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For the set B, we likewise find that most of B is not present; instead, only the parts where
B overlaps A or C, but not both, are included. We can render this part with the expression:
(B ∩ A ∩ C ′) ∪ (B ∩ C ∩ A′)

Finally, for the set C, we find everything is included except for the intersection of all three
sets, so we can exclude the middle with the expression C ∩ (A ∩B)′.

To complete the expression, we can union all these parts together, omitting any duplicate
sub-expressions. This gives us the set expression (A∩B∩C ′)∪ (A∩C ∩B′)∪ (B∩C ∩A′)∪
(C ∩ (A ∩ B)′). This expression is substantially larger than necessary, and can be reduced
either through general reasoning, or through specific transformation rules which will be
discussed in detail in the next chapter.

Alternative Solution: A closer look at the original diagram reveals two distinct parts: the C
part and the middle A ∩B wedge. A key insight is to realize that the relationship between
C and A∩B in the diagram is that of symmetric difference (one or the other, but not both).
In other words, the diagram can be represented by the set expression C△(A ∩B).

Recall the definition of symmetric difference given previously, A△B = (A ∪B) ∩ (A ∩B)′.
We can insert C and (A ∩ B) into the definition, coming up with a final set expression:
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(C ∪ (A ∩ B)) ∩ (C ∩ (A ∩ B))′. Although this set expression is different from the set
expression in the previous solution, they are both correct because they both visualize the
same Venn diagram.

6. Problem: Symmetric difference is defined earlier in this chapter as A△B = (A∪B)∩(A∩B)′.
An alternative definition of symmetric difference is given by A△B = (A \ B) ∪ (B \ A).
Prove that these two definitions are equivalent.

Solution: Begin by substituting in the definition for set difference into the second formula in
order to find a standard set expression. Recall the definition of set difference: A\B = B′∩A.
Therefore, the second definition expands to A△B = (B′ ∩ A) ∪ (A′ ∩ B). We now must
show that two set expressions are equivalent. The two expressions are (A ∪ B) ∩ (A ∩ B)′

and (B′ ∩ A) ∪ (A′ ∩ B). A quick check for equivalence at this point is to see if the two
expressions are identical. If so, they are trivially equivalent. However, the two expressions
are not identical. Therefore, we must move on to a more sophisticated check. If these two
expressions are equivalent, then they must have the same Venn diagram.

First, create the Venn diagram for (A ∪B) ∩ (A ∩B)′.

Consider the union
A ∪B:

Separately, find the
intersection A ∩B:

Take the com-
plement of the
intersection to find
(A ∩B)′:

Intersect the two re-
sults to find the final
set:

As a sanity check, confirm that the final Venn diagram does in fact reflect the concept of
symmetric difference: one or the other, but not both.

Second, create the Venn diagram for (B′ ∩ A) ∪ (A′ ∩ B). Be careful to note that B′ ∩ A
and A′ ∩ B, although lexically similar, are not the same. For conciseness the construction
of B′ ∩ A and A′ ∩ B are omitted, although these could be constructed following the same
techniques shown previously.
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Consider the inter-
section B′ ∩ A:

Separately, find the
intersection A′ ∩B:

Union the results to
find the final set:

The final diagram in both cases are the same, therefore, the two set expressions are proven
equivalent. Both definitions of symmetric difference are correct.

7. Problem: How many different Venn diagrams of two sets are possible?

Solution: Recall that a Venn diagram of n sets consists of 2n regions. In this case, a Venn
diagram of two sets has 22 = 4 regions (namely, outside both sets, just the A part, just the B
part, and the intersection of the two). Each region is either selected or not selected (n = 2)
and there are four regions (r = 4). Order is important, because each region is specific
(choosing two regions isn’t enough information; we must know which two are chosen).
Repetition is allowed, because more than one region can be selected. Therefore, we have
permutations with repetition, counted with the formula nr.

Plugging in our values for n and r, we get the formula 24 = 16. There are (only) sixteen
different Venn diagrams of two sets.

8. Problem: There are four possible Venn diagrams of one set. Enumerate set expressions for
each.

Solution: The four possibilities are: nothing (the empty set), just A, everything except A,
and everything (the universe).

∅
(Alternatively:

A ∩ A′)

A A′ U
(Alternatively:

A ∪ A′)
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A.4 Simplifying Set Expressions

Exercises found in Chapter 4 on page 35.

1. Problem: Simplify the set expression (A′ ∪B′)′.

Solution: First, create the Venn diagram for the expression so we can verify when we have
reached the final simplified expression. We see from the diagram that the final simplified
expression will be A ∩B.

1. (A′ ∪B′)′ Initial Set
2. (A′ ∪B′)′ DeMorgan’s Law 8a
3. A′′ ∩B′′ Double Negation Law 6 (applied in both places)
4. A ∩B Final Expression

2. Problem: An incorrect attempt at simplifying B ∪ B′ ∩ A was shown earlier in the chapter.
Show a correct simplification for this expression.

Solution: As seen previously, B ∪B′ ∩ A will reduce to A ∪B.

1. B ∪ (B′ ∩ A) Initial Set with parentheses; Distributive Law 4a
2. (B ∪B′) ∩ (B ∪ A) Complement Law 7a
3. U ∩ (B ∪ A) Commutative Law 3b
4. (B ∪ A) ∩ U Identity Law 5b
5. B ∪ A Final Expression

3. Problem: Simplify the set expression A ∩B ∩ A′ ∪ A ∪B′ ∪ A′.

Solution: First, find the Venn diagram for this expression. You’ll notice the entire area is
filled in, meaning the expression must reduce to the universe, U .
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Caution! We cannot grab the A′ ∪ A out of the middle and start there! With a mix of
intersection and union we must be mindful of order of operations.

1. A ∩B ∩ A′ ∪ A ∪B′ ∪ A′ Initial Set
2. A ∩B ∩ A′ ∪ A ∪B′ ∪ A′ Commutative Law 3b
3. A ∩ A′ ∩B ∪ A ∪B′ ∪ A′ Complement Law 7b
4. ∅ ∩B ∪ A ∪B′ ∪ A′ Commutative Law 3b
5. B ∩∅ ∪ A ∪B′ ∪ A′ Identity Law 5d
6. ∅ ∪ A ∪B′ ∪ A′ Commutative Law 3a
7. A ∪∅ ∪B′ ∪ A′ Identity Law 5a
8. A ∪B′ ∪ A′ Commutative Law 3a
9. A ∪ A′ ∪B′ Complement Law 7a
10. U ∪B′ Commutative Law 3a
11. B′ ∪ U Identity Law 5c
12. U Final Expression

4. Problem: In the previous chapter, a certain Venn diagram was found to have the set expres-
sion (A ∩B ∩ C ′) ∪ (A ∩ C ∩B′) ∪ (B ∩ C ∩ A′) ∪ (C ∩ (A ∩B)′). Simplify this expression.

Solution: Recall the Venn diagram for this expression. An alternative solution to the prob-
lem gave us the expression (C ∪ (A ∩ B)) ∩ (C ∩ (A ∩ B)′). However, we can’t be sure this
is the simplest form.

Due to the size and length of this expression, not all applications of the commutative and
associative law will be specified. However, it is important to be sure that all manipulation
of order and parentheses obeys the laws and order of operations.
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1. (A ∩B ∩ C ′) ∪ (A ∩ C ∩B′) ∪ (B ∩ C ∩ A′) ∪ (C ∩ (A ∩B)′) Initial Set
2. (A ∩B ∩ C ′) ∪ (A ∩ C ∩B′) ∪ (B ∩ C ∩ A′) ∪ (C ∩ (A ∩B)′) DeMorgan’s Law 8b
3. (A ∩B ∩ C ′) ∪ (A ∩ C ∩B′) ∪ (B ∩ C ∩ A′) ∪ (C ∩ (A′ ∪B′)) Distributive Law 4b
4. (A ∩B ∩ C ′) ∪ (A ∩ C ∩B′) ∪ (B ∩ C ∩ A′) ∪ (C ∩ A′) ∪ (C ∩B′) Absorption Law 9a
5. (A ∩B ∩ C ′) ∪ (A ∩ C ∩B′)∪(C ∩ A′) ∪ (C ∩B′) Commutative Law 3a
6. (A ∩B ∩ C ′) ∪ (A ∩ C ∩B′) ∪ (C ∩B′) ∪ (C ∩ A′) Absorption Law 9a
7. (A ∩B ∩ C ′) ∪ (C ∩B′) ∪ (C ∩ A′) Distributive Law 4b
8. (A ∩B ∩ C ′) ∪ (C ∩ (B′ ∪ A′)) DeMorgan’s Law 8b
9. (A ∩B ∩ C ′) ∪ (C ∩ (B ∩ A)′) Final Expression

At this point, there are no clear opportunities for further simplification. So we believe (but
cannot prove) that this is likely the simplest form of this expression.

5. Problem: Prove that (A ∩B′) ∪ (A ∩B) = A ∪ (B ∩B′).

Solution: Equivalence of two expressions can be proven by showing a sequence of law
applications starting at one of the expressions and ending at the other. Either direction is
acceptable (in other words, you can start with the expression on the left and end with the
expression on the right, or vice versa).

1. (A ∩B′) ∪ (A ∩B) Initial Set
2. (A ∩B′) ∪ (A ∩B) Distributive Law 4b
3. A ∩ (B′ ∪B) Commutative Law 3a
4. A ∪ (B ∩B′) Final Expression

By showing a sequence of law applications which translates one expression into the other,
we have proven the two expressions are equivalent. Note that it is not necessary to pass
through the simplest form of either expression to prove equivalence.

Alternative Solution: Simplify both expressions. Begin with (A ∩B′) ∪ (A ∩B).

1. (A ∩B′) ∪ (A ∩B) Initial Set
2. (A ∩B′) ∪ (A ∩B) Distributive Law 4b
3. A ∩ (B′ ∪B) Commutative Law 3a
4. A ∩ U Identity Law 5b
5. A Final Expression

Likewise, simplify A ∪ (B ∩B′).

1. A ∪ (B ∩B′) Initial Expression
2. A ∪ (B ∩B′) Complement Law 7b
3. A ∪∅ Identity Law 5a
4. A Final Expression

Both expressions simplify to the same expression, thus they must be equivalent.

6. Problem: Prove the absorption law (9a) x ∪ (x ∩ y) = x.
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Solution: In this case, since we are trying to prove a particular group of laws, we must use
only the other laws to go from one expression to the other. Therefore, we can use any laws
except the absorption laws 9a and 9b.

1. x ∪ (x ∩ y) Initial Set
2. x ∪ (x ∩ y) Identity Law 5b
3. (x ∩ U) ∪ (x ∩ y) Distributive Law 4b
4. x ∩ (U ∪ y) Identity Law 5c
5. x ∩ U Identity Law 5b
6. x Final Expression

We have proven using the set algebra laws that x ∪ (x ∩ y) = x, so the absorption law (9a)
holds.

7. Problem: Prove the absorption law (9b) x ∩ (x ∪ y) = x.

Solution: If we accept the previous solution which proves x∪(x∩y) = x, then it is possible to
apply the dual law which states that for any algebraic law of sets, if the unions are replaced
with intersections and vice versa, and the universe and empty set likewise switched, that
modified equivalence will also be true.

By replacing all unions with intersections and all intersections with unions, we get x∩ (x∪
y) = x, which is the law we were asked to prove. Therefore, based on the proof for the
absorption law (9a) and the dual property, the absorption law (9b) holds.

Alternative Solution: Similar to the previous sequence of steps.

1. x ∩ (x ∪ y) Initial Set
2. x ∩ (x ∪ y) Identity Law 5a
3. (x ∪∅) ∩ (x ∪ y) Distributive Law 4a
4. x ∪ (∅ ∩ y) Identity Law 5d
5. x ∪∅ Identity Law 5a
6. x Final Expression

We have proven using the set algebra laws that x ∩ (x ∪ y) = x, so the absorption law (9b)
holds.

8. Problem: Megan is writing a video game which needs to process space ships with various
weapons. Let the universe be all space ships in play, the set L be all space ships with lasers,
the set M be all space ships with missiles, and the set D be all space ships with death rays.
Any space ships may be configured with any or all weapons (or no weapons).

Megan needs to write a program to find all space ships which meet one or more of the
following criteria:

(a) The ship has both missiles and lasers.

(b) The ship has death rays or lasers, but not both.

(c) The ship has missiles.
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(d) The ship has lasers, missiles, and death rays.

Devise a single simplified set expression to find the ships Megan is looking for.

Solution: The first step in solving this problem is to write set expressions for each item.

(a) The ship has both missiles and lasers. This will be expressed with intersection because
we only want the “both” case. M ∩ L

(b) The ship has death rays or lasers, but not both. The symmetric difference gives us one
or the other, but not both. D△L

(c) The ship has missiles. Just M

(d) The ship has lasers, missiles, and death rays. Intersection of all three: L ∩M ∩D

The original problem called for the ship to meet one or more of the criteria, so if we connect
all the criteria with union operators, that will give us the set that meets one or more of the
criteria. This gives us an initial set expression of (M ∩ L) ∪ (D△L) ∪M ∪ (L ∩M ∩D).

First, apply the definition of symmetric difference to give (M ∩ L) ∪ ((D ∪ L) ∩ (D ∩ L)′) ∪
M ∪ (L ∩M ∩D).

1. (M ∩ L) ∪ ((D ∪ L) ∩ (D ∩ L)′) ∪M ∪ (L ∩M ∩D) Initial Set
2. (M ∩ L) ∪ ((D ∪ L) ∩ (D ∩ L)′) ∪M ∪ (L ∩M ∩D) Commutative Law 3a
3. (M ∩ L) ∪M ∪ ((D ∪ L) ∩ (D ∩ L)′) ∪ (L ∩M ∩D) Absorption Law 9a
4. M ∪ ((D ∪ L) ∩ (D ∩ L)′) ∪ (L ∩M ∩D) Commutative Law 3a
5. M ∪ (L ∩M ∩D) ∪ ((D ∪ L) ∩ (D ∩ L)′) Absorption Law 9a
6. M ∪ ((D ∪ L) ∩ (D ∩ L)′) Final Expression

The D and L bit looks like it could be simplified, but this is already the simplest form to
represent symmetric difference unless there were other uses that we could possibly rely
on; but there are not.
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A.5 Logical Operators and Truth Tables

Exercises found in Chapter 5 on page 47.

1. Problem: Let r be true if the roses are red, let d be true if the daffodils are in bloom, and let
c be true if the cucumbers are ripe. Write Boolean expressions for the following claims:

(a) The roses are red and the daffodils are in bloom.

(b) Either the cucumbers are ripe, or the daffodils are in bloom, but not both.

(c) Either the roses are red, or the daffodils are in bloom, or both.

(d) The roses are not red, nor are the daffodils in bloom, but at least the cucumbers are
ripe.

(e) If the cucumbers are ripe, then either the roses must be red or the daffodils must be in
bloom, or both.

Solution: The main difficulty with translating English sentences into Boolean expressions
is handling the “or”, which can mean either inclusive or exclusive OR. In these cases, the
nature of the “or” has been clarified. In general cases, additional thinking or clarification
may be needed to ensure the correct kind of OR is used.

(a) The roses are red and the daffodils are in bloom.
r ∧ d

(b) Either the cucumbers are ripe, or the daffodils are in bloom, but not both.
The exclusion of both requires the use of exclusive OR. c ⊕ d, which could also be
written as (c ∨ d) ∧ ¬(c ∧ d)

(c) Either the roses are red, or the daffodils are in bloom, or both.
Here, the inclusive OR is acceptable. r ∨ d

(d) The roses are not red, nor are the daffodils in bloom, but at least the cucumbers are
ripe.
The “at least” here has no specific meaning, other than to say that what follows is true,
whereas the preceding values are false. ¬r ∧ ¬d ∧ c

(e) If the cucumbers are ripe, then either the roses must be red or the daffodils must be in
bloom, or both.
The if statement makes no claim in the case that the cucumbers are not ripe. We can
use implication to describe this situation. c → (r ∨ d), which could also be written as
¬c ∨ (r ∨ d).

2. Problem: Create a truth table for the Boolean expression (a ∧ b) ∨ ¬(a ∨ c).

Solution: First, create the shell of the truth table. There are three variables present here: a,
b, and c. Therefore, we will have four columns and eight rows.
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a b c (a ∧ b) ∨ ¬(a ∨ c)

T T T
T T F
T F T
T F F
F T T
F T F
F F T
F F F

Next, for each row, plug in the values and solve. For example, the first row gives the
expression (T ∧ T ) ∨ ¬(T ∨ T ). This expression can be solved stepwise:

(a ∧ b) ∨ ¬ (a ∨ c)
(T T ) (T T )

(T T T) (T T T)
(T T T) F (T T T)
(T T T) T F (T T T)

The outcome for the first row is true. For the second row we have a = T, b = T and c = F ,
giving the expression (T ∧ T ) ∨ ¬(T ∨ F ).

(a ∧ b) ∨ ¬ (a ∨ c)
(T T ) (T F )

(T T T) (T T F)
(T T T) F (T T F)
(T T T) T F (T T F)

The third row gives us a = T, b = F and c = T . Therefore the expression is (T∧F )∨¬(T∨T ).

(a ∧ b) ∨ ¬ (a ∨ c)
(T F ) (T T )

(T F F) (T T T)
(T F F) F (T T T)
(T F F) F F (T T T)

This process is repeated for every row.
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a b c (a ∧ b) ∨ ¬(a ∨ c)

T T T T
T T F T
T F T F
T F F F
F T T F
F T F T
F F T F
F F F T

Alternative Solution:

The expression (a∧ b)∨¬(a∨ c) can be broken down from the top first. We see the top most
operator is an OR, which means if either or both terms are true, the whole expression is.
Applying short circuit evaluation, we first fill in as true any rows where a ∧ b is true.

a b c (a ∧ b) ∨ ¬(a ∨ c)

T T T T
T T F T
T F T
T F F
F T T
F T F
F F T
F F F

Next, we consider the right hand side of ¬(a ∨ c). In this case, we are looking for any rows
not already claimed where both a and c are false. The reason for this is because of the NOT
out front – which turns the expression into “neither a nor c”, the same as “both a and c
are false”. There are only two such rows, the bottom, and another near the bottom. These
become true as well.

a b c (a ∧ b) ∨ ¬(a ∨ c)

T T T T
T T F T
T F T
T F F
F T T
F T F T
F F T
F F F T

Finally, any remaining unclaimed rows must be false.
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a b c (a ∧ b) ∨ ¬(a ∨ c)

T T T T
T T F T
T F T F
T F F F
F T T F
F T F T
F F T F
F F F T

3. Problem: Create a truth table for the Boolean expression a ∧ (T ∨ b) ∧ (c ∧ F ).

Solution: Again, check how many distinct variables are present. There are three: a, b, and c.
The values T and F are constants, not variables, so these do not affect the size of the truth
table.

First, create the empty table:

a b c a ∧ (T ∨ b) ∧ (c ∧ F )

T T T
T T F
T F T
T F F
F T T
F T F
F F T
F F F

The best way to approach this problem is to use the short-circuiting techniques. We notice
that the expression starts with a ∧ ... meaning that if a is false, the entire expression must
be false.

a b c a ∧ (T ∨ b) ∧ (c ∧ F )

T T T
T T F
T F T
T F F
F T T F
F T F F
F F T F
F F F F
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That’s half the rows just like that. The next subexpression is (T ∨ b). This subexpression
will always be true, because true OR anything will be true. We’re in an AND clause here,
so this subexpression is essentially meaningless. Moving along, the next AND clause is
(c∧F ). Is it possible for a term AND with false to ever be true? No, this subexpression will
always be false. And short-circuiting tells us that anything AND false is always false, so...

a b c a ∧ (T ∨ b) ∧ (c ∧ F )

T T T F
T T F F
T F T F
T F F F
F T T F
F T F F
F F T F
F F F F

This Boolean expression is always false, so it’s probably not a very useful expression.

4. Problem: Is ¬a ∧ ¬b equivalent to ¬(a ∨ b)?

Solution: The only surefire way to test for equivalence of two Boolean expressions is to
create a truth table for each, and compare them. In both cases, we have two variables a and
b, so the framework of the truth table can be constructed:

a b ¬a ∧ ¬b
T T
T F
F T
F F

To complete the first truth table, insert the various values per row into the expression.
Recall that NOT is applied first, and then the AND. For example, the first entry becomes
¬T ∧¬T which, applying the NOTs becomes F ∧F , which is false. The second line ¬T ∧¬F
which, applying the NOTs becomes F∧T , which is also false. The only true outcome occurs
when both inputs are false.

a b ¬a ∧ ¬b
T T F
T F F
F T F
F F T
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In the case of ¬(a ∨ b), we now have parentheses to deal with, so apply those first. The
subexpression a ∨ b will be true whenever either or both are true, so that is every row
except the last. The NOT operator inverts this, so the expression will be false on every row
except the last.

a b ¬(a ∨ b)

T T F
T F F
F T F
F F T

The truth tables are the same, so the two expressions are equivalent.

Alternative Solution: Translate the first expression into set notation: ¬a∧¬b becomes A′∩B′.
Apply DeMorgan’s Law (8a), giving (A ∪ B)′. Translate this back into Boolean notation:
¬(a ∨ b). This is the exact second expression, so they must be equivalent.

In general, all of the set expression simplification laws also apply to Boolean expressions
and can be used directly, as will be shown in the next chapter.

5. Problem: Prove that a ↔ b = (a → b) ∧ (b → a).

Solution: First, recall the truth table for a → b.

a b a → b

T T T
T F F
F T T
F F T

We can “plug in” the opposite values to get the truth table for b → a. Be very careful to
note that the column ordering for the input values is now backwards! We could have also
rearranged the rows to have the usual ordering.

b a b → a

T T T
T F F
F T T
F F T

These two expressions are being combined with AND. Therefore, the final expression will
only be true when both subexpressions are true. We’ll construct a new truth table and fill
in the result row by row, comparing each pair of matching rows in the above tables. Be
sure to match the rows by values and not position!
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a b (a → b) ∧ (b → a)

T T T
T F F
F T F
F F T

Compare this to the truth table for a ↔ b. They are identical, so the two expressions are
proven equivalent.

6. Problem: Consider the following two truth tables. Are these tables equivalent?

a b result
T T T
T F F
F T T
F F T

b a result
F T F
F F T
T F T
T T T

Solution: At first glance, the two tables seem different: the first row in the left one is true,
while the first row in the right one is false. However, carefully look at the values in the
rows: these values are in different row orders. Further, the columns are also in a different
order. We’ll take the right truth table and convert it back to standard form step by step.

First, re-arrange the columns so that the variables are in incrementing order.

a b result
T F F
F F T
F T T
T T T

Next, rearrange the rows to match the row ordering of the standard table.

a b result
T T T
T F F
F T T
F F T

When ordered and arranged in the same manner, the truth tables are identical; thus, they
are equivalent.
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7. Problem: Convert the set expression A′ ∪B′ ∩ (A ∪B)′ into a Boolean expression.

Solution: Replace each ∪ with ∨, ∩ with ∧, and ′ with ¬. Recall that in set notation a com-
plement follows a variable or subexpression, while in Boolean notation the complement
precedes the expression.

Thus, the Boolean equivalent expression is ¬a ∨ ¬b ∧ ¬(a ∨ b).

8. Problem: Find a Boolean expression matching the following truth table:

a b c result
T T T F
T T F T
T F T T
T F F F
F T T F
F T F T
F F T F
F F F T

Solution: Use the standard technique for disjunctive normal form. Start by crossing out all
rows which have a false result.

a b c result
T T T F
T T F T
T F T T
T F F F
F T T F
F T F T
F F T F
F F F T

Create a partial truth table by removing these crossed-out rows.

a b c result
T T F T
T F T T
F T F T
F F F T

For each remaining row, create a disjunctive expression by ANDing together all the terms,
with NOT in front of any indicated to be false.
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a b c Conjunction
T T F a ∧ b ∧ ¬c
T F T a ∧ ¬b ∧ c
F T F ¬a ∧ b ∧ ¬c
F F F ¬a ∧ ¬b ∧ ¬c

Finally, connect these subexpressions with OR operators to form the final expression: (a ∧
b ∧ ¬c) ∨ (a ∧ ¬b ∧ c) ∨ (¬a ∧ b ∧ ¬c) ∨ (¬a ∧ ¬b ∧ ¬c).
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A.6 Manipulating Logical Expressions

Exercises found in Chapter 6 on page 61.

1. Problem: Prove that DeMorgan’s Law can be extended to additional terms. In other words,
prove that ¬(a ∧ b ∧ c) = ¬a ∨ ¬b ∨ ¬c.

Solution: If a derivation which translates ¬(a∧ b∧ c) into ¬a∨¬b∨¬c can be devised, then
it is likely this same derivation can apply to a larger number of terms.

1. ¬(a ∧ b ∧ c) Initial Expression
2. ¬((a ∧ b) ∧ c) DeMorgan’s Law 8b
3. ¬(a ∧ b) ∨ ¬c DeMorgan’s Law 8b
4. ¬a ∨ ¬b ∨ ¬c Final Expression

If additional terms are needed, they can be “peeled off” incrementally by repeating step 2.

2. Problem: For each of the following Boolean expressions, indicate if it is a contradiction, a
tautology, or just satisfiable.

(a) a ∨ (b ∧ ¬a)

(b) ¬(¬a ∨ ¬b) ∧ ¬(a ∧ b)

(c) a ∨ b ∨ c ∨ ¬(a ∧ b ∧ c)

Solution: Contradiction, tautology, and satisfiable can be proven using truth tables.

(a) a ∨ (b ∧ ¬a)
We’ll start with the framework for a two value (a and b) truth table.

a b a ∨ (b ∧ ¬a)
T T
T F
F T
F F

First, solve the expression with a = T and b = T . T ∨ ... is always true, by the short-
circuit rule, so the first row is true. The same reasoning holds for the second row. For
the last two rows, we know that a is false, so we depend completely on b ∧ ¬a. Given
that a is false, ¬a will be true, so the AND operator reduces to just the value of b in
these cases.
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a b a ∨ (b ∧ ¬a)
T T T
T F T
F T T
F F F

Some of the rows are true, and one is false. Therefore, this expression is satisfiable.

(b) ¬(¬a ∨ ¬b) ∧ ¬(a ∧ b)
We could create a truth table for this expression as-is, but a little simplification up
front might make our job much easier.

1. ¬(¬a ∨ ¬b) ∧ ¬(a ∧ b) Initial Expression
2. ¬(¬a ∨ ¬b) ∧ ¬(a ∧ b) DeMorgan’s Law 8a
3. ¬¬a ∧ ¬¬b ∧ ¬(a ∧ b) Double Negation Law 6
4. (a ∧ b) ∧ ¬(a ∧ b) Complement Law 7b
5. F Final Expression

What does this mean for our truth table? It means that regardless of the value of a or
b, the result will be false.

a b ¬(¬a ∨ ¬b) ∧ ¬(a ∧ b)

T T F
T F F
F T F
F F F

This expression is a contradiction.

(c) a ∨ b ∨ c ∨ ¬(a ∧ b ∧ c)
Again, a little simplification up front can save a lot of time in the end.

1. a ∨ b ∨ c ∨ ¬(a ∧ b ∧ c) Initial Expression
2. a ∨ b ∨ c ∨ ¬(a ∧ b ∧ c) DeMorgan’s Law 8b
3. a ∨ b ∨ c ∨ ¬a ∨ ¬b ∨ ¬c Commutative Law 3a
4. a ∨ ¬a ∨ b ∨ ¬b ∨ c ∨ ¬c Complement Law 7a
5. T ∨ T ∨ T Identity Law 5c
6. T Final Expression

What does this mean for our truth table? It means that regardless of the value of a, b,
or c, the result will be true.
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a b c a ∨ b ∨ c ∨ ¬(a ∧ b ∧ c)

T T T T
T T F T
T F T T
T F F T
F T T T
F T F T
F F T T
F F F T

This expression is a tautology.

3. Problem: Simplify the Boolean expression (a ∨ b) ∧ (a⊕ ¬b).

Solution: Refer first to the definition of exclusive or (XOR) which tells us that a ⊕ b =
(a ∨ b) ∧ ¬(a ∧ b). We can rewrite this expression by inserting the definition of ⊕ with
(a ∨ b) ∧ ((a ∨ ¬b) ∧ ¬(a ∧ ¬b)).

1. (a ∨ b) ∧ ((a ∨ ¬b) ∧ ¬(a ∧ ¬b)) Initial Expression
2. (a ∨ b) ∧ (a ∨ ¬b) ∧ ¬(a ∧ ¬b) Distributive Law 4a
3. a ∨ (b ∧ ¬b) ∧ ¬(a ∧ ¬b) Complement Law 7b
4. a ∨ F ∧ ¬(a ∧ ¬b) Identity Law 5a
5. a ∧ ¬(a ∧ ¬b) DeMorgan’s Law 8b
6. a ∧ (¬a ∨ ¬¬b) Double Negation Law 6
7. a ∧ (¬a ∨ b) Distributive Law 4b
8. (a ∧ ¬a) ∨ (a ∧ b) Complement Law 7b
9. F ∨ (a ∧ b) Identity Law 5a
10. a ∧ b Final Expression

Note that in step 6 there may instead be a temptation to re-associate the parentheses to
get rid of a ∧ ¬a. This would not be correct because parentheses cannot be re-associated
between AND and OR. Those parentheses were created implicitly by step 5 which showed
the transformation occurring as a single unit. In order to keep the order of operations
correct, the parentheses had to be added.

Therefore, (a ∨ b) ∧ (a⊕ ¬b) can be simplified to a ∧ b.

4. Problem: Rewrite (a ∧ b) → (b → c) without implications, then simplify.

Solution: Substitute the definition of implication: a → b = ¬a ∨ b. This gives us the expres-
sion ¬(a ∧ b) ∨ (b → c). Substitute again to get the expression ¬(a ∧ b) ∨ (¬b ∨ c).
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1. ¬(a ∧ b) ∨ (¬b ∨ c) Initial Expression
2. ¬(a ∧ b) ∨ (¬b ∨ c) DeMorgan’s Law 8b
3. (¬a ∨ ¬b) ∨ (¬b ∨ c) Associative Laws
4. ¬a ∨ ¬b ∨ ¬b ∨ c Idempotent Law 1a
5. ¬a ∨ ¬b ∨ c Final Expression

You might notice the final expression can be translated into a → (b → c).

5. Problem: Prove the implication law 10b (called contrapositive), that x → y = ¬y → ¬x.

Solution: We will apply various algebra laws, not with the intent of simplifying, but with
the intent of reaching a specific goal. First, apply the definition of → to both sides: ¬x∨y =
¬¬y∨¬x. We know that due to the commutative law we can reorder the left side to y∨¬x.
Apply the double negation law to y, and there we are: ¬¬y ∨ ¬x.

6. Problem: Consider the implementation

b = b == false

(a) Convert to logical form,

(b) Simplify, and

(c) Describe in words

Solution:

(a) Convert to logical form
Note the difference between assignment and equality operators. As a logical expres-
sion, this can be represented as b = b ↔ F .

(b) Simplify
Consider the right hand side for simplification. By the identity law 5e, b ↔ F sim-
plifies directly to ¬b. If, instead, a simplification using basic operators is desired, the
following sequence can be followed:

1. b ↔ F Initial Expression, sub definition of equality
2. ¬(b⊕ F ) Sub definition of XOR
3. ¬(b⊕ F ) Identity Law 5g
4. ¬b Final Expression

Therefore b = b ↔ F simplifies to b = ¬b. This can be implemented with
b = !b

(c) Describe in words
This assignment statement has the action of inverting the value of b in the computer’s
memory.
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7. Problem: Assume response and value are Boolean variables. For this implementation:

(a) Create a truth table, and

(b) Simplify

response = false
if (value == true) then

response = true
else

response = false
end if

Solution:

(a) Create a truth table
We find that response is used only as an output, and value is used only as an input.
Therefore, we have a brief truth table:

value response

T
F

Filling in these two rows requires manual consideration of each possibility. If value
is true, then response gets set to true, and the procedure ends. If, on the other hand,
value is false, then response remains false. Therefore:

value response

T T
F F

(b) Simplify
The easiest simplification of this implementation is gleaned from viewing the truth
table above. We can see that response takes on whatever is held in value, thus:
response = value

Is a simpler implementation.

8. Problem: Assume self->active and STATUS are Boolean variables. Note that
self->active is one variable, the -> does not carry any significance in terms of logi-
cal operators. For this implementation:

(a) Create a truth table, and

(b) Simplify
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if (self->active != STATUS) then
if ((self->active == false)
&& (STATUS == true)) then

STATUS = false
else if ((self->active == true)
&& (STATUS == false)) then

STATUS = true
end if

end if

Solution:

(a) Create a truth table
We find that self->active and STATUS are read as inputs, and that STATUS is also
used as an output value. Therefore, we get a truth table like:

self->active STATUS STATUS

T T
T F
F T
F F

The entire implementation is surrounded by a condition that self->active and
STATUS are different. If this is not so, then nothing happens, and STATUS retains its
original value. So in the case where the two input values are equal, STATUS output is
the same as input:

self->active STATUS STATUS

T T T
T F
F T
F F F

In the case where they aren’t equal, each possibility is considered by the implementa-
tion: one must be true, and one must be false. Follow each of these conditions to fill
in the remaining entries for STATUS:

self->active STATUS STATUS

T T T
T F T
F T F
F F F
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(b) Simplify
Again, the best bet here is to look at the truth table. We find that the original input
value of STATUS, although considered in the implementation, is actually irrelevant.
Instead, in all cases, the output STATUS is the value of self->active. Therefore,
we choose the new implementation:
STATUS = self->active
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A.7 Decision Tables

Exercises found in Chapter 7 on page 71.

1. Problem: Consider selecting an appropriate college to attend. The student posits the fol-
lowing requirements:

• College must be in the Northwest region, unless it is a top ten college.

• College must offer computer science, or math, or both.

• Computer science program, if offered, must have at least one renowned faculty mem-
ber.

Create a decision table to indicate if a college meets the requirements. Convert the decision
table into Boolean expressions.

Solution: We must first define the various conditions and actions. Reading through the
requirements list gives the following conditions: Northwest region, top ten college, offers
CS, offers math, CS has at least one renowned faculty member.

There is only one action: apply to that college, or not.

Naively, with five Boolean conditions, this decision table would have 25 = 32 condition
columns. For space we make several abbreviations, in particular that a college having at
least one renowned computer science faculty will be abbreviated as “rn. CS. fac.”

Cond. and Acts
Rules

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Northwest region Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
top ten college Y Y Y Y Y Y Y Y N N N N N N N N
offers math Y Y Y Y N N N N Y Y Y Y N N N N
offers CS Y Y N N Y Y N N Y Y N N Y Y N N
rn. CS. fac. Y N Y N Y N Y N Y N Y N Y N Y N
Apply Y N Y Y Y N N N Y N Y Y Y N N N

Cond. and Acts
Rules

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
NW region N N N N N N N N N N N N N N N N
top ten college Y Y Y Y Y Y Y Y N N N N N N N N
offers math Y Y Y Y N N N N Y Y Y Y N N N N
offers CS Y Y N N Y Y N N Y Y N N Y Y N N
rn. CS. fac. Y N Y N Y N Y N Y N Y N Y N Y N
Apply Y N Y Y Y N N N N N N N N N N N

There are several simplifications we can perform to reduce the size of the decision table: if a
college does not have a computer science program, it cannot have any renowned computer
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science faculty. Therefore, the condition offers CS is false and CS has at least one renowned
faculty member is true is an impossible condition, and will be omitted. If a college is in
the Northwest region, we don’t care about top ten; so top ten is an indifferent condition in
that case. If the college has a math department, then we can ignore whether or not it has
a computer science department. However, if it does have a computer science department,
we still must check to ensure it has renowned faculty. These are additional indifferent
conditions. Finally, if the college is not in the northwest, and is not a top ten college, we
can be indifferent about all remaining conditions.

Conditions and Actions Rules
1 2 3 4 5 6 7 8

Northwest region Y Y Y N N N N -
top ten college - - - Y Y Y N -
offers math Y - - Y - - - N
offers CS N Y Y N Y Y - N
renowned CS faculty - Y N - Y N - -
Apply Y Y N Y Y N N N

By checking which outcomes have a true action, we can create a Boolean expression. Let
n be Northwest region, t be top ten, m be offers math, c be offers CS, r be renowned CS
faculty, and a be apply. Then a = (n∧m∧¬c)∨ (n∧c∧r)∨ (¬n∧ t∧m∧¬c)∨ (¬n∧ t∧c∧r).

This expression can be simplified, if desired, to a = (n∨ t)∧ (m∨ c)∧ (c → r). Note that use
of the implication operator to indicate that if a computer science program exists, it must
have renowned faculty. If not, we don’t care about renowned faculty.

2. Problem: Decompose the following multi-valued conditions into Boolean conditions. Con-
vert the resulting decision table into a Boolean expression.

Conds. and Actions
Rules

1 2 3 4 5 6 7 8 9
Age < 18 < 18 < 18 18− 45 18− 45 18− 45 > 45 > 45 > 45
Membership Non Basic Pr Non Basic Pr Non Basic Pr
Call from Trainer N N N N Y Y Y Y Y

Solution: To create a Boolean decision table, each multi-valued condition (with more than
two possibilities) should be translated into a condition for each possibility, with only one
of the possibilities being true at a time. So we will have condition Age < 18, Age 18 − 45,
Age > 45, Non-member, Basic member, and Premium member.
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Conds. and Actions Rules
1 2 3 4 5 6 7 8 9

Age < 18 Y Y Y N N N N N N
Age 18− 45 N N N Y Y Y N N N
Age > 45 N N N N N N Y Y Y
Non-Member Y N N Y N N Y N N
Basic Member N Y N N Y N N Y N
Premium Member N N Y N N Y N N Y
Call from Trainer N N N N Y Y Y Y Y

Note that the number of condition columns does not change, thanks to the technique of
eliminating impossible conditions.

To convert this table into a Boolean expression, we first identify variables for all conditions
and actions. Let c be Age < 18, y be Age 18− 45, and a be Age > 45. Let n be non-member,
b be basic member, and p be premium member. The only action, t, is call from trainer. (We
can’t use c because it is already in use.)

By considering each column where the action is true, we can create the following expres-
sion: t = (¬c ∧ y ∧ ¬a ∧ ¬n ∧ b ∧ ¬p) ∨ (¬c ∧ y ∧ ¬a ∧ ¬n ∧ ¬b ∧ p) ∨ (¬c ∧ ¬y ∧ a ∧ n ∧ ¬b ∧
¬p)∨ (¬c∧¬y ∧ a∧¬n∧ b∧¬p)∨ (¬c∧¬y ∧ a∧¬n∧¬b∧ p). Gag! However, we can apply
our knowledge of impossible conditions to shorten this expression considerably. Note that
this simplification is not generally true: it depends on certain permutations of conditions
being impossible. In particular, we know that exactly one of the age conditions and exactly
one of the membership conditions must be true. So if we specify just the true one, the other
must be false. This reduces the expression to t = (y ∧ b)∨ (y ∧ p)∨ (a∧ n)∨ (a∧ b)∨ (a∧ p).

Additional reasoning can lead to additional simplification. Notice that when the age value
a is true, all three membership types are accepted. We know that exactly one of these will be
true, so that entire subexpression can be simplified to just a, giving us t = (y∧b)∨(y∧p)∨a.

In the first subexpressions, requiring that either a basic or premium membership is had is
the same as requiring that a non-membership is NOT had, giving us t = (y ∧ ¬n) ∨ a.

3. Problem: Create a decision table for the following statement:

A mailing is to be sent out to customers. The content of the mailing is about the current
level of discounting and potential levels of discounting. The content is different for differ-
ent types of customers. Customer Types A, B, and C get a normal letter except Customer
Type C, who get a special letter. Any customer with 2 or more current lines or with a credit
rating of ‘X’ gets a special paragraph added with an offer to subscribe to another level of
discounting.

Convert the resulting decision table into a Boolean expressions.

Solution: First, identify conditions and actions. One condition is customer type. Types A,
B, and C are indicated: however, there could be other types as well. We also need to know
if the customer has 2 or more current lines, and if the credit rating is ‘X’. Actions will be
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to send a normal letter or special letter (or no letter), and to add a special offer paragraph.
There is also the possibility, if there are customer types beyond A, B, or C, that we have
a case where we would add a paragraph but don’t have a letter to add it to. In that case,
we’ll ignore the paragraph.

We will use the multi-valued type customer with values A, B, C, and O. O will be for
“other”, any type not specified. For the action send letter, the values N for normal, S for
special, or X for none will be used.

Conditions and Actions Rules
1 2 3 4 5 6 7 8 9 10 11 12 13

Customer Type A A A A B B B B C C C C O
2 or more current lines? Y Y N N Y Y N N Y Y N N -
Credit rating ‘X’? Y N Y N Y N Y N Y N Y N -
Send Letter N N N N N N N N S S S S X
Special Offer Y Y Y N Y Y Y N Y Y Y N N

In order to convert this table into Boolean expressions, we must create a variable for each
input and output. This involves decomposing multi-valued inputs and outputs. For cus-
tomer type, we’ll let the Boolean variables ca, cb, and cc indicate the three known types of
customers. We’ll let t mean 2 or more current lines, and x mean credit rating of ‘X’.

On the action side, the variables ln and ls will indicate which type of letter is sent (normal
or special). We’ll let s mean Special Offer.

There are then three expressions, two for the various send letter possibilities, and one for
special offer.

Applying some intuitive simplification, we find the expressions are:

ln = ca ∨ cb
ls = cc
s = t ∨ x

4. Problem: Create a decision table for the following statement:

If the package weight is less than 5 pounds, base shipping is $4.00. If the package weight
is 5 pounds to 10 pounds, base shipping is $6.00. For packages more than 10 pounds,
base shipping is $10.00. If overnight shipping is selected, add $20.00 to the shipping cost.
If insurance is selected, double the base shipping price. Insurance is mandatory when
overnight shipping is used. Packages 5 pounds or more should have a “heavy” label ap-
plied. If insurance is selected or the package is more than 10 pounds, have a “special
freight” label applied.

Solution: The conditions are package weight (less than 5, 5 to 10, more than 10), overnight,
and insurance. Actions are the shipping cost, whether a “heavy” label is applied, and
whether a “special freight” label is applied.
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For the package weight condition, we’ll use S to mean less than 5, M to mean 5 to 10, and L
to mean more than 10. Also note that insurance is mandatory with overnight shipping; this
creates an impossible condition of insurance false and overnight true. Such a condition will
be omitted from the table. We’ll assume the “or” for the special freight label is an inclusive
or.

Conditions and Actions Rules
1 2 3 4 5 6 7 8 9

Package Weight S S S M M M L L L
Overnight? Y N N Y N N Y N N
Insurance? Y Y N Y Y N Y Y N
Shipping cost $28 $8 $4 $32 $12 $6 $40 $20 $10
Heavy label N N N Y Y Y Y Y Y
Special Freight label Y Y N Y Y N Y Y Y

5. Problem: Consider the following decision table:

Conditions and Actions Rules
1 2 3

Enrolled in Class Y Y N
Passed Most Recent Exam Y - N
Advertise Next Class Y N Y
Send Checkup Email Y Y N

(a) Indicate all conditions which have contradictory actions.

(b) Indicate all conditions which are undefined.

(c) For all undefined conditions, is the condition probably impossible or simply unde-
fined?

Solution: Look for missing or duplicated condition columns.

(a) Indicate all conditions which have contradictory actions.
If a student is enrolled in class, and also passed their most recent exam, then two
columns match (rule columns 1 and 2). This leads to a contradiction as to whether or
not we should advertise the next class to them.

(b) Indicate all conditions which are undefined.
If a student is not enrolled in the class but did pass their most recent exam, no column
matches. In this case, the outcome is undefined.

(c) For all undefined conditions, is the condition probably impossible or simply unde-
fined?
We must decide if the most recent exam is in the class in question. If so, then it does
not make sense for someone not enrolled in a class to have passed an exam in that
class. Making that assumption, the condition would be impossible.
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Consider the following decision table (called the original table) below:

Conditions and Actions Rules
1 2 3 4 5 6 7 8

Under $50 Y Y Y Y N N N N
Pays by check Y Y N N Y Y N N
Pays by credit card Y N Y N Y N Y N
Call Supervisor N N N N Y Y N N
Check Photo ID Y Y Y N Y Y Y N
Proceed with sale Y Y Y Y N N Y Y

Assume that each purchase can be paid by only one method of payment: cash, check, or credit
card.

6. Problem: Simplify the original table by applying indifferent conditions.

Solution: To find indifferent conditions, search for similar actions. For example, rules 1, 2,
3, and 7 have the same set of outcomes. Rules 4 and 8 have the same set of outcomes. Rules
5 and 6 have the same set of outcomes. For each set, look at the conditions to see if certain
combinations are covered.

Rules 1 and 2 cover all possible values of pay by credit card, so these can be condensed
into one rule. Rules 4 and 8, and also 3 and 7, cover all possible values of under $50, so
these can be condensed into one rule for each pair. Rules 5 and 6 cover all possible values
of pays by credit card, so these can be condensed into one rule. Note that rules 1, 2, 5, and
6 cannot be all combined because other aspects of the conditions (Under $50?) and actions
(Call supervisor and proceed with sale) are different.

This allows us to condense the table to just four condition rule columns:

Conditions and Actions Rules
1 2 3 4

Under $50 Y - - N
Pays by check Y N N Y
Pays by credit card - Y N -
Call Supervisor N N N Y
Check Photo ID Y Y N Y
Proceed with sale Y Y Y N

7. Problem: Simplify the original table by detecting impossible conditions.

Solution: The presence of impossible conditions is indicated by the phrase that tells us that
only ONE method of payment will be used. If both check and credit card are false, we can
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assume cash is used. However, it is not possible that both check and credit card can be
true, as this would indicate two methods of payment. Any columns with both these values
true can be removed as impossible.

Looking at the original table, rules 1 and 5 are thus impossible conditions and can be re-
moved. This shortens the table to six rules.

Conditions and Actions Rules
1 2 3 4 5 6

Under $50 Y Y Y N N N
Pays by check Y N N Y N N
Pays by credit card N Y N N Y N
Call Supervisor N N N Y N N
Check Photo ID Y Y N Y Y N
Proceed with sale Y Y Y N Y Y

8. Problem: Simplify the original table by applying multi-valued conditions.

Solution: One clue that a multi-valued condition might be possible if the statement that
only ONE method of payment will be used. Thus, after eliminating impossible conditions
(as in the previous problem), we can reduce the payment condition to a single row, with
three values: C for cash, H for check, and R for credit card.

Conditions and Actions Rules
1 2 3 4 5 6

Under $50 Y Y Y N N N
Payment Method H R C H R C
Call Supervisor N N N Y N N
Check Photo ID Y Y N Y Y N
Proceed with sale Y Y Y N Y Y

Finally, it is certainly possible to apply all three techniques to create a decision table which is as
simple and compact as possible:

Conditions and Actions Rules
1 2 3 4 5

Under $50 Y Y - N N
Payment Method H R C H R
Call Supervisor N N N Y N
Check Photo ID Y Y N Y Y
Proceed with sale Y Y Y N Y
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A.8 Logic Circuits

Exercises found in Chapter 8 on page 87.

1. Problem: Determine the output of the given circuit if x is false and y is true.

Solution: Place the input values with the associated input gates.

Trace along the wires to propagate values.

All gates which have all their inputs available can be solved, producing an output. The
leftmost AND and the two NOT gates meet this criteria. For the AND gate, false and true
will be false. The NOT gates invert their respective inputs.
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Continue tracing.

The topmost OR gate has one value ready, but not the other. So we cannot solve the OR
gate yet. The AND gate on the bottom, however, has both inputs ready, so it can be solved.
True and false will again be false.

Propagate that result.

The final OR gate can now be solved. False or false yields false, so the result of the entire
circuit is false for the given inputs.
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Alternative Solution: Enter the circuit into a simulation program, and select the appropriate
input values.

This shows the inputs configured as specified, and the output of the circuit is false.

2. Problem: Show the definition of exclusive or, ⊕, in a circuit using only basic gates.

Solution: Recall that exclusive or (XOR) is defined as “one or the other, but not both.” A
previous chapter gave the definition a⊕ b = (a ∨ b) ∧ ¬(a ∧ b). We can create a circuit with
one OR, two ANDs, and one NOT. From inside-out, the innermost operations are a∨ b and
a ∧ b, so we wire these from the inputs.

Next, the output of the AND part (on the bottom), is connected to a NOT gate.
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Finally, both results are connected with the final AND gate. The top part reflects “one or
the other” and the bottom part reflects ”not both”; these are combined with an AND to
indicate that both conditions must be met. Here is the final circuit that represents exclusive
OR using only basic gates.

If compound gates were allowed, the AND-NOT sequence on the bottom could be replaced
with a NAND gate.

3. Problem: Create a Boolean expression for the circuit shown.

Solution: Start by tracing the values from the origins.
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The AND gate on top, and the NOT gate on bottom have all their inputs available first.
The OR gate has one input available, but not the other, so we can’t complete it yet.

Next, we can complete the bottom OR gate, which makes the input subexpressions avail-
able for both inputs of the final OR gate.

Combining these with an OR (be sure to use parentheses to enforce order of operations)
gives us the expression (x ∧ y) ∨ (x ∨ ¬y).

4. Problem: Create a Boolean expression for the circuit shown.

Solution: Start by tracing the values from the origins.
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Two gates can be solved. Be careful to identify them correctly! The top gate is the NAND
gate (this can be confirmed by the small circle following it). The bottom gate is the NOR
gate. Likewise, look for the small circle after the gate symbol. The NAND gate is equivalent
to AND followed by NOT; likewise, the NOR gate is equivalent to OR followed by NOT.

There are no symbols in expressions for NAND or NOR, so they must be expanded using
their definitions.

The final gate is also a compound gate, the XOR (exclusive OR) gate. We could expand the
definition of exclusive OR, however, there is an expression symbol for XOR: ⊕. Using this
symbol directly in the final expression is both appropriate and helpful, since it results in a
smaller expression.

The final expression is ¬(x ∧ y)⊕ ¬(x ∨ y).

5. Problem: Prove that NAND is universal by using NAND gates to construct circuits which
simulate:

(a) an AND gate

(b) an OR gate

(c) a NOT gate

Solution: The easiest way to begin with this problem is to attack the NOT gate. We know
that NAND is defined as AND followed by NOT. An AND gate which receives both inputs
from the same source becomes simply an identity gate: if both inputs are true, the output
is true. If both inputs are false, the output is false. Thus, if we attach the same input to both
inputs of a NAND gate, the AND gate falls away and it behaves like a NOT gate.
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We can prove this behavior using Boolean algebra laws.

1. ¬(a ∧ a) Initial Expression
2. ¬(a ∧ a) Idempotent Law 1b
3. ¬a Final Expression

With this NOT simulator in place, we can easily tackle the creation of an AND gate. A
NAND gate is AND followed by NOT. Adding a second NOT after the NAND gate will
cause the two NOTs to cancel, leaving just an AND gate. Therefore, if we attach our defi-
nition of NOT above to a NAND gate, we should get an AND equivalent.

We can prove this behavior using Boolean algebra laws.

1. ¬(¬(a ∧ b) ∧ ¬(a ∧ b)) Initial Expression
2. ¬(¬(a ∧ b) ∧ ¬(a ∧ b)) Idempotent Law 1b
3. ¬¬(a ∧ b) Double Negation Law 6
4. a ∧ b Final Expression

We have now reasoned our way into AND and NOT. What about OR? To create an OR
gate, start with some Boolean algebra laws to create an equivalent expression using only
AND and NOT. In a sense, we work this one backwards to find an expression constructed
of gates we are allowed to use.

1. a ∨ b Initial Expression
2. a ∨ b Double Negation Law 6 (applied to both sides)
3. ¬¬a ∨ ¬¬b DeMorgan’s Law 8b
4. ¬(¬a ∧ ¬b) Final Expression

We can convert this expression into a circuit. Using the NOT/NAND equivalence shown,
first implement ¬a and ¬b. Then connect them with a NAND gate to take care of the AND
and the final NOT.
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With the ability to simulate AND, OR, and NOT, all possible circuits can be now be simu-
lated.

6. Problem: Create a logic circuit for the expression ¬(¬a ∨ (a ∧ b)).

Solution: Start by laying out all the gates that will be needed: two NOTs, an OR, and an
AND.

Following order of operations, proceed from the inside of the expression out. The inner-
most parentheses group indicates the subexpression a ∧ b, so connect that first.

Moving outwards, a ¬a is connected to the previous subexpression using an OR.
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Finally, the entire result so far is passed through an outer NOT gate, which produces the
final result:

7. Problem: Create a logic circuit for the expression ¬(¬a∨¬b)∨(b∧(¬a∨¬b)). Take advantage
of reuse to avoid unnecessary gates.

Solution: First, identify repeated subexpressions which can be reused. The subexpression
(¬a ∨ ¬b) appears twice. Let u = ¬a ∨ ¬b, and update the original expression to take
advantage of this definition. The modified expression is ¬u ∨ (b ∧ u).

First, create a circuit which represents the subexpression defined as u. This circuit inverts
a and b and combines them with an OR.

As usual, work from the inside-out, taking advantage of u wherever it is appropriate. First
the b ∧ u subexpression is created.

This result can be combined with ¬u using an OR to create the final circuit:
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8. Problem: Convert this circuit into disjunctive normal form.

Solution: A four step process will be employed.

(a) Convert the circuit to a Boolean expression.

(b) Create the truth table for the Boolean expression.

(c) Create a disjunctive normal form Boolean expression from the truth table.

(d) Convert this expression into a circuit.

It is also possible to find the truth table directly from the circuit by simulating all possible
inputs, thus combining the first two steps.

First, convert the circuit to a Boolean expression. Trace through the circuit along the wires.
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The AND (top) and OR (bottom) occur first, constructing subexpressions x ∧ y and y ∨ z
respectively.

The NOT (bottom) applies to the OR’d subexpression, and we prepare for the final opera-
tor.

Applying the final OR, we determine the equivalent Boolean expression.

The expression for this circuit is (x ∧ y) ∨ ¬(y ∨ z).

Next, create a truth table for the expression.
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x y z (x ∧ y) ∨ ¬(y ∨ z)

T T T T
T T F T
T F T F
T F F T
F T T F
F T F F
F F T F
F F F T

Following the procedure for converting a truth table back into a Boolean expression in
disjunctive normal form, cross out all the false rows.

x y z (x ∧ y) ∨ ¬(y ∨ z)

T T T T
T T F T
T F T F
T F F T
F T T F
F T F F
F F T F
F F F T

For each remaining row, generate an expression by ANDing each condition.

x y z Conjunction
T T T x ∧ y ∧ z
T T F x ∧ y ∧ ¬z
T F F x ∧ ¬y ∧ ¬z
F F F ¬x ∧ ¬y ∧ ¬z

Combine all the conjunctions with ORs to create an expression in disjunctive normal form:
(x ∧ y ∧ z) ∨ (x ∧ y ∧ ¬z) ∨ (x ∧ ¬y ∧ ¬z) ∨ (¬x ∧ ¬y ∧ ¬z)

To implement this expression in a circuit, place the NOTs first, followed by the ANDs,
followed by the master OR. It is acceptable to reuse the NOT results. For example ¬z is
used in several subexpressions. Note that in this circuit, the small triangles (called buffer
gates) do not change the value of their respective inputs, they are simply used to organize
the wiring.

The final circuit mirrors the disjunctive normal form expression:
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A.9 Number Systems

Exercises found in Chapter 9 on page 99.

1. Problem: An IPv6 address is comprised of eight blocks of four hexadecimal digits. How
many bits long is an IPv6 address?

Solution: First, determine how many hexadecimal digits are in an IPv6 address: 8 ∗ 4 = 32.
Each hexadecimal digit is equivalent to four binary digits (bits). We can confirm this by
noting a hexadecimal digit has 16 possibilities, and, by the multiplicity counting rule, four
bits have 24 = 16 possibilities as well. Finally 32 ∗ 4 = 128. Therefore, an IPv6 address is
128 bits long.

2. Problem: Convert the octal number 7378 into hexadecimal.

Solution: Both octal and hexadecimal are representations of binary. Thus, the easiest ap-
proach is to do the conversion via binary. Recall that each octal digit represents three bits.
Using either counting, or the octal-binary conversion table, we find: 7378 = 111 011 1112.

Rearranging the bits to allow for four-bit blocks gives us 1 1101 11112. The number of bits
is not evenly divisible by four (causing the odd one out). Like commas separating blocks
of three in decimal numbers, we split these numbers into blocks from the right, and if
necessary, pad out the number with 0s on the left. So 1 1101 11112 = 0001 1101 11112.

Finally, substitute the appropriate hexadecimal digit for each four-bit block, using either
counting or the hexadecimal-binary conversion table. This gives us 1DF16.

Alternative Solution: Convert via decimal. The octal to decimal conversion is accomplished
by multiplying each digit in the octal number by its place value.

7 3 7
82 81 80

Then:

7 ∗ 82 = 448
3 ∗ 81 = 24
7 ∗ 80 = 7

479

The total is 448 + 24 + 7 = 47910. Next, convert from decimal to hexadecimal.

Divide by 16 (the hexadecimal base), recalling the remainders form the new number.

479÷ 16 = 29r15
29÷ 16 = 1r13
1÷ 16 = 0r01
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This gives us the sequence 15, 13, 1. The first remainder is the rightmost digit, so the
hexadecimal number is 1DF16.

3. Problem: Convert the binary number 1011102 into hexadecimal.

Solution: A hexadecimal digit is equivalent to four bits. Break the binary number into four
bit blocks, starting from the right. This gives us 10 11102. Pad zeros on the left to create
four bit blocks, giving us 0010 11102. Substitute the appropriate hexadecimal digit for each
four-bit block: 2E16.

4. Problem: Convert the hexadecimal number 5D6B16 into decimal.

Solution: Set up a conversion table with each digit and the place value, as powers of the
base.

5 D 6 B
163 162 161 160

Substitute the appropriate values for letters.

5 13 6 11
163 162 161 160

5 ∗ 163 = 20480
13 ∗ 162 = 3328
6 ∗ 161 = 96
11 ∗ 160 = 11

23915

The sum of the multiplications gives the conversion result: 5D6B16 = 2391510.

Alternative Solution: Starting with the leftmost digit, accumulate the sum by adding the
current digit, and if more digits remain, multiply the current sum by the base (16, in this
case).

• 5 (leftmost digit)

• 5 ∗ 16 = 80 (more digits remain)

• 80 + 13 = 93 (D = 13)

• 93 ∗ 16 = 1488 (more digits remain)

• 1488 + 6 = 1494

• 1494 ∗ 16 = 23904 (more digits remain)

• 23904 + 11 = 23915 (that’s the end, no more digits)
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Therefore, 5D6B16 = 2391510

5. Problem: Convert the number 40335 into decimal.

Solution: Base 5 is not a commonly used base. However, all the usual conversion techniques
apply. We can start by setting up a conversion table.

4 0 3 3
53 52 51 50

Determine the powers of five, multiply each digit by its place value and add the result.

4 ∗ 53 = 500
0 ∗ 52 = 0
3 ∗ 51 = 15
3 ∗ 50 = 3

518

Thus, 40335 = 51810.

Alternative Solution: Starting with the leftmost digit, accumulate the sum by adding the
current digit, and if more digits remain, multiply the current sum by the base (5, in this
case).

• 4 (leftmost digit)

• 4 ∗ 5 = 20 (more digits remain)

• 20 + 0 = 20

• 20 ∗ 5 = 100 (more digits remain)

• 100 + 3 = 103

• 103 ∗ 5 = 515 (more digits remain)

• 515 + 3 = 518 (that’s the end, no more digits)

Thus, 40335 = 51810.

Check: In most of these problems, a base-converting calculator can be employed to check
our answer. However, many base-converting calculators only operate on common bases,
such as 2, 8, 10, and 16. In order to check the answer, we may convert back from decimal
into base 5.

The decimal result is 51810. Divide by the target base (5) and record the remainders.

518÷ 5 = 103r3
103÷ 5 = 20r3
20÷ 5 = 4r0
4÷ 5 = 0r4 (stop because quotient is now 0)



300 APPENDIX A | Solutions

In this process, the first remainder produced is the rightmost digit. Thus, the conversion
yields 51810 = 40335. This matches the original problem, so we are confident the result is
correct.

6. Problem: Convert the number 51.158 into decimal.

Solution: Notice the presence of the decimal place. This tells us where, in our conversion
chart, the power will switch to negative.

5 1 1 5
81 80 8−1 8−2

Once the powers have been assigned, the decimal place can be forgotten. If needed, the
definition of negative powers can be applied.

5 1 1 5

81 80
1

81
1

82

Calculate the values of the places. Note that the number of decimal places may be substan-
tial. In the case of unusual bases, such as base 3, some of the decimals repeat endlessly. In
that case, rounding to an appropriate number of places is usually acceptable, but the an-
swer is then an approximation and not exact. If an exact representation is desired, fractions
can be used.

5 ∗ 81 = 40.000000
1 ∗ 80 = 1.000000
1 ∗ 8−1 = 0.125000
5 ∗ 8−2 = 0.078125

41.203125

Summing the results indicates the conversion 51.158 = 41.20312510.

Using Fractions: Continue from the powers chart:

5 1 1 5

81 80
1

81
1

82

Compute the whole number portion in the usual way, but leave the decimal portion as
fractions instead.

5 ∗ 81 = 40
1 ∗ 80 = 1

1 ∗ 8−1 =
1

8

5 ∗ 8−2 =
5

64
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In order to add fractions, a common denominator must be found. The easiest common

denominator in this case is 64. This gives the sum 40 + 1 +
8

64
+

5

64
= 41

13

64
.

7. Problem: Convert the decimal number 53.310 into binary.

Solution: Convert the whole number and fractional portion separately. The whole number
portion can be converted by repeated divisions and retaining the remainders.

53÷ 2 = 26r1
26÷ 2 = 13r0
13÷ 2 = 6r1
6÷ 2 = 3r0
3÷ 2 = 1r1
1÷ 2 = 0r1 (quotient is zero, so stop)

The first remainder found is the rightmost digit, so the whole number portion 5310 =
1101012.

On to the fractional part. Begin with 0.310. Multiply by the target base (2) and extract the
whole number part. Continue until no fractional part remains.

0.3 ∗ 2 = 0.6 (digit 0)
0.6 ∗ 2 = 1.2 (digit 1)
0.2 ∗ 2 = 0.4 (digit 0)
0.4 ∗ 2 = 0.8 (digit 0)
0.8 ∗ 2 = 1.6 (digit 1)

At this point, we would be back to 0.6 ∗ 2 = ..., indicating the sequence will repeat forever.

Thus, 53.310 = 110101.010012 = 110101.0100110011001100110011001 · · ·2. In base 2, this
value is repeating and thus cannot be exactly represented with any number of digits. Most
commonly, a finite number of bits are available and so the number is rounded slightly. This
rounding is often not noticed but can occasionally lead to certain computational errors.

8. Problem: Order the numbers from least to greatest: 1238, 1234, 12316, 12310.

Solution: Convert all values into the same base, and then compare in the usual way. Two of
the values are in bases easily converted to binary (base 8 and 16). What about base 4? Four
is a power of two, so base 4 is likewise a straightforward conversion to and from binary:

Base 4 Binary
0 00
1 01
2 10
3 11
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The easiest conversion is probably to convert everything into binary and compare from
there, as three of the four values have immediate binary conversions via substitution.
Specifically:

• 1238 = 001 010 0112 = 10100112

• 1234 = 01 10 112 = 110112

• 12316 = 0001 0010 00112 = 1001000112

The final conversion is 12310 into binary. Divide by the target base (2) and retain remain-
ders.

123÷ 2 = 61r1
61÷ 2 = 30r1
30÷ 2 = 15r0
15÷ 2 = 7r1
7÷ 2 = 3r1
3÷ 2 = 1r1
1÷ 2 = 0r1 (stop at quotient 0)

The remainders produce the rightmost digit first, so 12310 = 11110112.

In the absence of any leading zeros, whole numbers with more digits are larger.

• 1238 = 10100112 (7 digits)

• 1234 = 110112 (5 digits)

• 12316 = 1001000112 (9 digits)

• 12310 = 11110112 (7 digits)

Numbers with the same digit count can be compared in the usual way, left to right, with
the first non-tied digit being used to determine the larger number. In order from least to
greatest:

• 1234 = 110112 (5 digits)

• 1238 = 10100112 (7 digits)

• 12310 = 11110112 (7 digits)

• 12316 = 1001000112 (9 digits)

Alternative Solution: Consider the fact that for any two numbers with the same digits and
different bases, the numbers can be ordered by their bases. That is, if b < c then ab < ac.
Given this rule, and the fact that all the numbers have the same digits, they can be simply
ordered from least to greatest by their bases: 1234, 1238, 12310, 12316.



SECTION A.10 | Integer Numbers 303

A.10 Integer Numbers

Exercises found in Chapter 10 on page 111.

1. Problem: Show how the computer performs the unsigned addition 4510 + 1710 in eight bit
binary.

Solution: First, convert each value into binary. 4510 = 1011012 and 1710 = 100012. In this
case, a fixed width of eight bits has been specified. Pad out each number on the left with
0s until eight bits is reached. If a number is more than eight bits, it cannot be represented.
This gives us 0010 11012 and 0001 00012.

1

0 0 1 0 1 1 0 1
0 0 0 1 0 0 0 1
0 0 1 1 1 1 1 0

The result, 0011 11102 can be translated back into decimal, to confirm that 4510+1710 = 6210.

2. Problem: What happens when the computer attempts to perform the unsigned addition
20110 + 9910 in unsigned eight bit binary? How can the error be detected?

Solution: First, convert each value into binary and pad to eight bits, if needed: 20110 =
1100 10012 and 9910 = 0110 00112. Note that the value 20110, when translated into eight
bit binary, has a left-most bit of 1. Is this a problem? Does it indicate a negative? No, it
is fine: the problem specified unsigned eight bit binary. If Two’s Complement had been
specified, then we would stop and say that 20110 cannot be represented in eight bit Two’s
Complement.

1 1 1

1 1 0 0 1 0 0 1
0 1 1 0 0 0 1 1
10 0 1 0 1 1 0 0

Only eight bits are available for storage, so the extra bit (which triggers an overflow con-
dition) does not appear in the eight bit result: 1100 10012 + 0110 00112 = 0010 11002 with
overflow. The error in this result can be detected by noting the presence of the overflow
condition.

3. Problem: Show how the computer represents −7710 in eight bit Two’s Complement.

Solution: Note that the value is negative. First, represent the value in binary, padding to
the appropriate number of bits as needed: −7710 = −0100 11012. If the original value
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were positive, this would be the final Two’s Complement result. However, to represent a
negative number in Two’s Complement, we invert and add one.

Inverting 0100 1101 gives 1011 0010.

1 0 1 1 0 0 1 0
1

1 0 1 1 0 0 1 1

Thus, −7710 = 1011 00112C .

Check: Convert 1011 00112C into decimal. Note the leftmost bit is 1, therefore, the final
number will be negative. In order to find the absolute value, invert, and add one.

Inverting 1011 0011 gives 0100 1100.

0 1 0 0 1 1 0 0
1

0 1 0 0 1 1 0 1

Finally, −0100 11012 = −7710. The result is confirmed.

Alternative Check: Convert 1011 00112C into decimal. Use the Two’s Complement to decimal
shorthand. Perform a binary to decimal conversion in the usual way, except that the value
of the leftmost bit is negative.

1 0 1 1 0 0 1 1
−27 26 25 24 23 22 21 20

Add each place.

1 ∗ −27 = −128
0 ∗ 26 = 0
1 ∗ 25 = 32
1 ∗ 24 = 16
0 ∗ 23 = 0
0 ∗ 22 = 0
1 ∗ 21 = 2
1 ∗ 20 = 1

−77

Sum the results, yielding −7710. The result is confirmed.
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4. Problem: Show how the computer performs the subtraction 1310 − 2310 in eight bit Two’s
Complement.

Solution: Recall that the computer does not actually perform subtraction. Instead, the right-
hand value is negated (negative sign put in front), and the operation is addition. This gives
a modified problem of 1310 + (−2310).

Convert each value to binary, padding bits as needed. 0000 11012+(−0001 01112). Convert
both values into Two’s Complement. The leftmost value is positive, so nothing changes.
The rightmost value is negative, so invert and add one. The problem is now 0000 11012C +
1110 10012C .

1 1

0 0 0 0 1 1 0 1
1 1 1 0 1 0 0 1
1 1 1 1 0 1 1 0

The sum gives us 0000 11012C + 1110 10012C = 1111 01102C .

The decimal representation can be found by noting the leftmost bit is 1, so the value is
negative. Invert and add one: −0000 10102 = −1010.

Alternatively, the decimal representation can be found by using the shortcut conversion
tool.

1 1 1 1 0 1 1 0
−27 26 25 24 23 22 21 20

Add each place.

1 ∗ −27 = −128
1 ∗ 26 = 64
1 ∗ 25 = 32
1 ∗ 24 = 16
0 ∗ 23 = 0
1 ∗ 22 = 4
1 ∗ 21 = 2
0 ∗ 20 = 0

−10

Again, the sum of these is −1010.

5. Problem: Show how the computer performs the addition −2010 + 2310 in eight bit Two’s
Complement.

Solution: First, convert both values into binary and pad bits as needed. −2010 =
−0001 01002 and 2310 = 0001 01112. Next, convert these values into Two’s Complement.
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The positive value needs no alteration, and the negative value undergoes “invert and add
one”.

The value 0001 0100 inverts into 1110 1011. Add one:

1 1

1 1 1 0 1 0 1 1
1

1 1 1 0 1 1 0 0

This gives us an expression of 1110 11002C + 0001 01112C

1 1 1 1 1

1 1 1 0 1 1 0 0
0 0 0 1 0 1 1 1
10 0 0 0 0 0 1 1

The overflow bit falls away, and in the case of Two’s Complement, does not indicate an
error condition. This gives a result of 1110 11002C + 0001 01112C = 0000 00112C .

Converting back into decimal, we note the result value is positive, so no transformation is
required. 0000 00112C = 0000 00112 = 310.

6. Problem: What happens when the computer attempts to perform the addition −10010 +
(−8010) in eight bit Two’s Complement? How can the error be detected?

Solution: First, convert both values into binary and pad bits as needed. −10010 =
−0110 01002 and −8010 = −0101 00002. Both numbers are negative and so we must in-
vert and add one to convert into Two’s Complement. This gives −10010 = 1001 11002C and
−8010 = 1011 00002C . The latter shares a right hand block of 0s with its original due to a
substantial repeated carry from the add-one.

1 1

1 0 0 1 1 1 0 0
1 0 1 1 0 0 0 0
10 1 0 0 1 1 0 0

The overflow bit is set, but this does not indicate an error condition in Two’s Complement.
The result, with the extra bit fallen away, is: 1001 11002C + 1011 00002C = 0100 11002C . This
result can still be shown to be in error by sign checking. Sign checking indicates that a
Two’s Complement addition of two numbers with the same sign must have a result with
that same sign. In this case, both numbers were negative, so the result must be negative.
This result has a leftmost bit of zero, which indicates it is positive. Therefore, the compu-
tation is in error.

This can be confirmed conceptually by noting that −10010 + (−8010) = −18010, which is
outside the range of eight bit Two’s Complement.
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7. Problem: Convert the number 35410 into binary via BCD.

Solution: First, convert into BCD. BCD allocates a 4-bit block for each decimal digit. Thus,
35410 = 0011 0101 0100BCD. The three place values, from left to right, are 10010 = 11001002,
1010 = 10102, and 110 = 12. Multiply each 4-bit block by its place value. The multiplications
are 00112 ∗ 11001002, 01012 ∗ 10102, and 01002 ∗ 12.

First, solve 00112 ∗ 11001002. Using the commutative law, we can solve this as 11001002 ∗
00112. There are 1 bits in the first and second place, giving shifts of 11001002 ≪ 010 =
11001002, and 11001002 ≪ 110 = 110010002 (note that there is no fixed width here, so we
don’t drop away any digits off the left).

Add these results together:

1

1 1 0 0 1 0 0
1 1 0 0 1 0 0 0
10 0 1 0 1 1 0 0

Thus, 00112 ∗ 11001002 = 1001011002.

Next, solve 01012 ∗ 10102. There are 1 bits in the second and fourth place, giving shifts of
01012 ≪ 110 = 010102 and 01012 ≪ 310 = 01010002

1

0 1 0 1 0
0 1 0 1 0 0 0
0 1 1 0 0 1 0

Thus, 01012 ∗ 10102 = 1100102 (note that the leftmost zero bits have no significance and can
be dropped when working with the individual blocks).

Finally, solve 01002 ∗ 12. Anything multiplied by 1 is itself, so this remains 01002.

Add all the intermediate results together.

1 1 1 1

1 0 0 1 0 1 1 0 0
1 1 0 0 1 0

1 0 0
1 0 1 1 0 0 0 1 0

Thus, 35410 = 0011 0101 0100BCD = 1 0110 00102. Note that no bit width was specified, so
expanding to use nine bits is not a problem.
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8. Problem: Convert the number 28710 into BCD via binary.

Solution: First, convert into binary: 28710 = 1 0001 11112. To convert this binary number
into BCD, apply the double dabble algorithm. Start by configuring the space. How many
BCD blocks are needed? Apply the formula ⌈log10 2n⌉ ∗ 4 to determine this. We find that
29 = 51210, and ⌈log10 51210⌉ = 310. Three BCD blocks will require 12 bits total. Attach the
original number to the right side of the space: 0000 0000 0000 100011111.

BCD Blocks Input Operation
1. 0000 0000 0000 100011111 Start
1. 0000 0000 0000 none > 4
3. 0000 0000 0001 00011111 Shifted Left
4. 0 0 1 none > 4
5. 0000 0000 0010 0011111 Shifted Left
6. 0 0 2 none > 4
7. 0000 0000 0100 011111 Shifted Left
8. 0 0 4 none > 4
9. 0000 0000 1000 11111 Shifted Left
10. 0 0 8 Rightmost block exceeds four
11. 0000 0000 1011 11111 Added 112 to rightmost block
12. 0000 0001 0111 1111 Shifted Left
13. 0 1 7 Rightmost block exceeds four
14. 0000 0001 1010 1111 Added 112 to rightmost block
15. 0000 0011 0101 111 Shifted Left
16. 0 3 5 Rightmost block exceeds four
17. 0000 0011 1000 111 Added 112 to rightmost block
18. 0000 0111 0001 11 Shifted Left
19. 0 7 1 Middle block exceeds four
20. 0000 1010 0001 11 Added 112 to middle block
21. 0001 0100 0011 1 Shifted Left
22. 1 4 3 none > 4
23. 0010 1000 0111 Shifted Left, final result

Thus, 28710 = 1 0001 11112 = 0010 1000 0111BCD.
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A.11 Floating Point Numbers

Exercises found in Chapter 11 on page 122.

1. Problem: Convert 14.2510 into 16-bit binary floating point.

Solution: First convert into binary. The whole number and fractional portion are converted
separately, with 1410 = 11102 and 0.2510 = 0.012. The fractional portion can be seen without
going through a lot of work by realizing that the first place right of the decimal is a half,
followed by a quarter, and so on. So the entire number 14.2510 = 1110.012.

Next, represent the binary number in normalized scientific notation: 1.11001∗23. The lead-
ing one (left of the decimal point) will fall away as an implicit 1. The remaining significand
is 11001.

The exponent must be adjusted by the exponent bias. For 16-bit floating point, the expo-
nent bias is 15. 310 + 1510 = 1810 = 100102.

The number is positive, so the sign bit will be 0. Padding out the significand to fill the
required bits, the final value is 0100 1011 0010 0000 = 4B2016.

2. Problem: Convert −2.6710 into 16-bit binary floating point.

Solution: First convert into binary. The whole number and fractional portion are converted
separately, with 210 = 102. How about 0.6710? Convert using the repeated multiplication
technique:

0.67 ∗ 2 = 1.34 (digit 1)
0.34 ∗ 2 = 0.68 (digit 0)
0.68 ∗ 2 = 1.36 (digit 1)
0.36 ∗ 2 = 0.72 (digit 0)
0.72 ∗ 2 = 1.44 (digit 1)
0.44 ∗ 2 = 0.88 (digit 0)
0.88 ∗ 2 = 1.76 (digit 1)
0.76 ∗ 2 = 1.52 (digit 1)
0.52 ∗ 2 = 1.04 (digit 1)
0.04 ∗ 2 = 0.08 (digit 0)

We can stop at this point, although the digits continue, because we know that 16-bit floating
point only has ten significant bits.

So the number we have is 10.1010101110 · · ·2. Rewrite in normalized scientific notation
1.01010101110 · · · ∗ 21. The leftmost one bit drops away (implicit 1), and we have ten bits
to store the significand in. Count out the first ten bits: 0101010111. This becomes the
significand.
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The exponent, 1, as adjusted in the usual way by adding the exponent bias: 110 + 1510 =
1610 = 100002.

Finally, the number is negative, so apply a sign bit of 1, and attach the exponent and sig-
nificand. The final value is 1100 0001 0101 0111 = C15716.

3. Problem: Convert
1

3
(base 10) into 16-bit binary floating point.

Solution: Convert into binary. There is no whole number portion, so the fractional portion
will be converted. We know in advance that rounding will occur, so we could convert the
fraction into a decimal of a dozen places or so (it would be more than ten, as we need ten
bits after the first 1). It is also possible to continue with the fraction representation.

1

3
∗ 2 =

2

3
(digit 0)

2

3
∗ 2 = 1

1

3
(digit 1)

1

3
∗ 2 =

2

3
(digit 0)

2

3
∗ 2 = 1

1

3
(digit 1)

· · · The pattern continues.

The number, in binary, is 0.010101 · · · . Shifting this into scientific notation, we find
1.010101 · · · ∗ 2−2. The leftmost one is implicit, and falls away. We need ten bits to fill
in the significand, so repeat the pattern until ten bits are filled: 0101010101.

The exponent also needs to be biased: −210 + 1510 = 1310 = 11012. Remember to pad the
exponent, if needed, so that it occupies the right number of bits. In this case (16 bit floating
point), the exponent should occupy five bits: 01101.

The final value is 0011 0101 0101 0101 = 355516.

4. Problem: Convert the 16-bit floating point number 987616 into decimal.

Solution: First, break the hexadecimal into binary: 987616 = 1001 1000 0111 01102. Locate
the sign bit, exponent, and significand based on the known sizes of each of these. The sign
bit is leftmost, followed by five exponent bits (as defined for 16-bit floating point), and the
remainder are significand bits: 1001 1000 0111 0110.

The biased exponent is adjusted to yield 001102 = 610−1510 = −910. The sign bit is negative,
so at this point we have −1.0001110110 ∗ 2−9 = −0.00000000100011101102. Note the extra
(implicit) one bit that was placed back on in the scientific notation. It is important not to
forget the implicit one.

To convert −0.00000000100011101102 into decimal, start at the 2−9 place.
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1 0 0 0 1 1 1 0 1 1 0
2−9 2−10 2−11 2−12 2−13 2−14 215 2−16 2−17 2−18 2−19

Add up each place.

1 ∗ 2−9 = 0.001953125
0 ∗ 2−10 = 0
0 ∗ 2−11 = 0
0 ∗ 2−12 = 0
1 ∗ 2−13 = 0.0001220703125
1 ∗ 2−14 = 0.00006103515625
1 ∗ 2−15 = 0.000030517578125
0 ∗ 2−16 = 0
1 ∗ 2−17 = 0.00000762939453125
1 ∗ 2−18 = 0.000003814697265625
0 ∗ 2−19 = 0

0.002178192138671875

Attach the whole number portion (none in this case), and apply the sign bit. The final value
is −0.00217819213867187510.

5. Problem: Convert the 16-bit floating point number 7BFF16 into decimal. What, if anything,
is special about this value?

Solution: First, break the hexadecimal into binary: 7BFF16 = 0111 1011 1111 11112. Locate
the sign bit, exponent, and significand based on the known sizes of each of these. The sign
bit is leftmost, followed by five exponent bits (as defined for 16-bit floating point), and the
remainder are significand bits: 0111 1011 1111 11112.

The biased exponent is adjusted to yield 111102 = 3010−1510 = 1510. The sign bit is positive,
so at this point we have 1.1111111111 ∗ 215 = 1111 1111 1110 00002. There is no fractional
component, so this number is a whole number. Performing a normal binary to decimal
conversion yields 6550410.

This value is special because it is the largest actual number representable in 16-bit binary
floating point. If the exponent bits were all 1s, that would indicate a special case condition,
so the exponent is the largest it can be and still be a valid exponent. The significand like-
wise is the largest significand possible. Together, they form the largest value that can be
represented.

6. Problem: What is the smallest positive integer which cannot be represented in 16-bit binary
floating point?

Solution: We have previously seen that 6550410 is the largest number that can be represented
in 16-bit binary floating point. However, the next number down, found by decreasing the
least significant bit of the significand, is a substantial step: 0111 1011 1111 11102. This
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becomes 1.1111111110 ∗ 215 = 1111 1111 1100 00002 = 6547210. Thus, it is not possible to
represent numbers between 6547210 and 6550410 in 16-bit binary floating point.

For example, 6547310 cannot be represented in 16-bit binary floating point.

To systematically find the smallest such non-representable number, work backwards from
the binary result. Notice that the exponent can force a group of zeros on the right edge
of the number, which is the source of numbers being skipped. Move the exponent so that
the very first skip occurs: 1111 1111 11102. If we moved the number one more space to the
right, there would be no skip, as the significand fills in all the remaining bits. The number
1111 1111 11102 is representable, but 1111 1111 11112 is not, as there is not enough space in
the significand. Thus, 409510 cannot be represented in 16-bit binary floating point.

Could there be a smaller positive integer still? Instead of filling the significand with 1s,
we could fill it with 0s. We need only to ensure that the leftmost 1 remains, otherwise
the exponent will simply adjust to consume the empty space. This gives 1000 0000 00012.
Think about it: The leftmost one becomes implicit, and ten bits remain in the significand.
This doesn’t allow for the final, rightmost 1 to be represented. The value 1000 0000 00012 =
204910, the smallest positive integer not representable in 16-bit binary floating point.

Check: Represent 204910 in 16-bit binary floating point. Start with the binary value
1000 0000 00012 and apply scientific notation 1.000 0000 0001 ∗ 211. Bias the exponent
1110 + 1510 = 2610 = 110102. Altogether, with ten bits of significand (the leftmost one being
implicit), the number is 0110 1000 0000 0000. The rightmost 1 bit falls away due to insuffi-
cient representation space. Converting back, 0110 1000 0000 0000 becomes 1 ∗ 211 = 204810.
So the attempt to represent 204910 failed.

Integers smaller than 204810 can be represented because they will have a smaller exponent,
meaning that the whole number place will be one to the left, and the bit that fell away (in
this case) would be to the right of the decimal place, and not needed for integers.

7. Problem: In 16-bit binary floating point, how many numbers can be represented between
210 and 310, inclusively?

Solution: First, convert each of these values into binary scientific notation: 210 = 102 =
1.0 ∗ 21, and 310 = 112 = 1.1 ∗ 21. Notice the exponent is the same, so any value which
falls between these two will have the same exponent (although some values outside of
that range will share the exponent, such as 3.510). Accounting for the implicit 1 left of the
decimal place, the range for the significand will be 00 0000 0000 to 10 0000 0000 (being the
significands for 210 and 310, respectively). It is acceptable to just compare the significands,
because the exponent is the same.

Based on the value for 210, the nine bits remain, which can take on any value: 29 = 512
possibilities (for 00 0000 0000 through 01 1111 1111). The value of 310 is the upper limit,
and any change to its significand would give a number greater than three. Thus, there are
a total of 513 representable numbers between 210 and 310, inclusively.
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8. Problem: In 16-bit binary floating point, how many numbers can be represented between
010 and 110, inclusively?

Solution: This problem is somewhat more intense, because a variety of exponents are pos-
sible. The value 110 = 12 = 1 ∗ 20. Bias the exponent 010 + 1510 = 1510 = 011112. Any
exponent higher than this value will produce a larger number. With this exponent, only a
significand of all zeros will produce the value of 110; any other significand will produce a
larger number.

So, we are looking at exponents smaller than 011112. The smallest exponent is 000002,
a special case which indicates zero (to be included) and subnormal numbers (also to be
included). So for our purposes, there is no unusual consideration for the zero exponent.

For each exponent, there exists ten significand bits, with 210 = 1024 possibilities. The
exponent range being considered is 000002 through 011102, fifteen unique exponents.
102410 ∗ 1510 = 1536010. This includes zero and all values up to but not including 110.
Adding the value of one gives the total count of representable values as 15361.

Compare this answer to the previous problem: in both cases, there was a range of 1. Yet,
the count of representable values in that range varied tremendously. Looking at the prior
problems, with large numbers it could be difficult even to represent a whole number value,
much less the fractions in between. In general, binary floating point numbers have the most
representation capability near zero, and the weakest representation capability in numbers
further from zero.
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A.12 Unicode and ASCII

Exercises found in Chapter 12 on page 129.

1. Problem: Show how the phrase “Tall tree” would appear in UTF-8.

Solution: Each symbol in the phrase is covered by the original 7-bit ASCII, so one byte will
be used for each symbol. Be careful to note the difference between uppercase and lower-
case, and account for the space symbol. Each symbol can be identified in the ASCII chart
shown earlier. The rows are most significant bits, and the columns are the least significant
bits. The capital T, for example, is found in row 516 and column 416. Thus the T is encoded
as 5416. The remaining symbols are encoded likewise. The space is found at row 216 and
column 016, so its encoding is 2016.

The entire phrase is encoded as 54 61 6C 6C 20 74 72 65 6516.

2. Problem: Find the UTF-8 encoding for the Unicode code point 239910.

Solution: First, find the Unicode code point in hexadecimal. This is needed because all the
encoding rules are based on the hexadecimal ranges. We find that 239910 = 95F16. Check
the encoding rules for U+095F to find how it should be encoded. This code point falls into
the third category. Once converted into binary, the encoding 1110 abcd 10ef ghij 10kl mnop
will be used.

Converting 95F16 into binary gives 1001 0101 11112. Be careful! We need to ensure we have
the same number of bits that the code point listing has. For this encoding rule, the code
point range include 16 bits. Thus, we need to first pad out our number (by adding 0s on
the left) to include 16 bits. The padded value is 0000 1001 0101 11112
Substitute the bits into the pattern given (recall that a refers to the leftmost bit, and so on).
This gives 1110 0000 1010 0101 1001 11112 = E0 A5 9F16.

The Unicode code point 239910 (U+095F) is encoded in UTF-8 as E0 A5 9F16.

3. Problem: Find the Unicode code point associated with the UTF-8 encoding D7 9116.

Solution: First, identify which encoding pattern is in use. The sequence D7 9116 =
1101 0111 1001 00012. The first three bits are 110, which matches a two byte second row
pattern of 110a bcde 10fg hijk. Match the UTF-8 encoded bits against the pattern, de-
termining which bits participate in the code point. The code point bits are underlined:
1101 0111 1001 0001. Extract the code point bits, giving 101 1101 00012 = 5D116.

The UTF-8 sequence D7 9116 is associated with the Unicode code point U+05D1.

4. Problem: A certain document contains 1,500 English letters, 350 standard punctuation
marks (including space), and 50 symbols in Arabic. Arabic symbols have Unicode code
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points from U+0600 through U+06FF. Determine how many bytes of disk space this docu-
ment will take to store using UCS-2 compared to UTF-8. (Assume no overhead for format-
ting; only the encoded characters will be stored).

Solution: All English letters and standard punctuation are found on the 7-bit ASCII table,
and so can be encoded with one byte in UTF-8. Unicode code points in the U+06xx range
are second row (two byte) UTF-8 encodings. Thus, for UTF-8, this document will require
1500 + 350 + 50 ∗ 2 = 1950 bytes.

In UCS-2, all code points are encoded with two bytes. Thus, for UCS-2, this document will
require (1500 + 350 + 50) ∗ 2 = 3800 bytes. Due to the prevalence of English letters, the
UCS-2 will require almost double the size compared to the UTF-8 encoding.

5. Problem: The “Heart Sutra” is a famous Buddhist text. It is very short, at only 260 Chi-
nese symbols. Chinese symbols have Unicode code points from U+4E00 through U+9FCF.
Determine how many bytes of disk space this document will take to store using UCS-2
compared to UTF-8. (Assume no overhead for formatting; only the encoded characters
will be stored).

Solution: First, determine how many bytes per symbol are needed for UTF-8. The code
points in the range specified all fall into the third block (U+0800 to U+FFFF), requiring
three bytes per symbol. Thus, the document will require 260 ∗ 3 = 780 bytes to encode in
UTF-8.

Recall that UCS-2 uses exactly two bytes for all Unicode code points. Thus, UCS-2 will
require 260 ∗ 2 = 520 bytes to encode this document. Perhaps surprisingly, UCS-2 is more
efficient than UTF-8. Some countries have objected to the UTF-8 encoding on the grounds
that it favors English and European languages at the expense of Asian languages.

6. Problem: One English translation of the “Heart Sutra” contains 1,357 English symbols. Will
this document (again, assuming no overhead), encoded in UTF-8, take more or less space
than the Chinese version, also encoded in UTF-8?

Solution: Encoding English letters in UTF-8 requires one byte per symbol. Thus, this doc-
ument will require 1,357 bytes in UTF-8. The Chinese version required only 780 bytes in
UTF-8. The English translation, although it uses one byte instead of three bytes per symbol,
still takes almost twice as much space to encode due to higher symbol count.

7. Problem: The word “hello” in Chinese is rendered as . In UTF-8, these two symbols are
encoded as E4 BD A0 E5 A5 BD16. Find the Unicode code points for these symbols.

Solution: More than one symbol is involved, so to determine how many bytes to read, we
must consult the leftmost bits. The first four bits E16 = 11102. A pattern beginning with
1110 uses three bytes, so we will take the first three bytes (E4 BD A0) for the first symbol
and leave the rest for the remaining symbol(s).
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First, translate the hexadecimal representation into binary E4 BD A016 =
1110 0100 1011 1101 1010 00002. A sequence beginning with 1110 matches the third
row, three byte pattern 1110 abcd10ef ghij 10kl mnop. Mark which bits in the UTF-8
sequence are data in the pattern: 1110 0100 1011 1101 1010 00002 Extract the bits based on
the pattern: 0100 1111 0110 00002 = 4F6016. The first symbol has the Unicode code point
U+4F60.

Moving on, the next four bits E16 = 11102 also indicate a third tow, three byte pattern. The
remaining three bytes (E5 A5 BD16) must represent a single symbol.

Translate the hexadecimal representation into binary E5 A5 BD16 =
1110 0101 1010 0101 1011 11012. A sequence beginning with 1110 matches the third
row, three byte pattern 1110 abcd10ef ghij 10kl mnop. Mark which bits in the UTF-8
sequence are data in the pattern: 1110 0101 1010 0101 1011 11012 Extract the bits based on
the pattern: 0101 1001 0111 11012 = 597D16. The second symbol has the Unicode code
point U+597D.

The two symbols have the Unicode code points U+4F60 and U+597D respectively.

8. Problem: Translate the 8-bit Two’s Complement number 1101 01012C into UTF-8 for display.

Solution: In order to display this value, the digits associated with must be determined.
First, given that the value is Two’s Complement, determine if it is positive or negative. The
leading 1 indicates this is a negative number. Negative numbers are displayed starting
with a dash (minus sign), which, according to the ASCII table, is symbol U+002D (recall
that the 7-bit ASCII symbols have the same code points as Unicode).

Next, convert the number itself. Find the absolute value by inverting (0010 1010) and
adding one, yielding 0010 10112. This value must then be converted into BCD. An al-
gorithm such as the double dabble could be used to find that 0010 10112 = 4310 =
0100 0011BCD.

Looking up the digit zero, we find it has the Unicode code point U+0030. The digits are
in sequential order, so for each digit, simply add the BCD representation to the base code
point of U+0030 to find the code point for the digit. The leftmost digit is 3016 + 416 = 3416.
The rightmost digit is 3016 + 316 = 3316. Thus, the Unicode code points for the digits are
U+0034 followed by U+0033.

All together, including the negative sign, three symbols are needed: U+002D, U+0034,
U+0033.

Each of these code points must now be encoded into UTF-8. Fortunately, each of them
follows the first row, one byte encoding. Thus, the UTF-8 encoding of this sequence is just
2D 34 3316.
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A.13 Images and Color

Exercises found in Chapter 13 on page 144.

1. Problem: Describe the colors represented by the following RGB codes.

(a) #4682B4

(b) #C71585

(c) #A52A29

(d) #807E82

(e) #98FB99

Solution:

(a) #4682B4 This color is dominated by the blue component B416, with a secondary of
green. Green and blue together form cyan, but this color is slightly darker and has a
significantly increased red component. Thus, we could describe it as a “grayish blue
with a hint of green”.

(b) #C71585 This color is dominated by the red component, with a secondary of blue.
There is minimal green in this color. If red and blue were evenly mixed, the color
would be purple; but the red dominates. Therefore, the color is more of a red-violet.

(c) #A52A29 This color is dominated by the red component, with an almost even mix of
blue and green. The blue and green temper and dull the red, making it more orange
or brown.

(d) #807E82 This color consists of three almost equal components (7E16 is only 2 away
from 8016). If the red, green, and blue components are nearly equal, the color is a
shade of gray. Given that the values are in the middle range of spectrum, this gray is
a middle gray (halfway between white and black).

(e) #98FB99 This color is strongly green, with a substantial amount of red and blue as
well; the high levels of all three components suggest a bright color. The red and blue
are about equal, so the color will remain centered on green. A light, pale green, is the
likely result.

2. Problem: Describe the colors represented by the following HSV values.

(a) 260 degrees, 35% saturation, 94% value

(b) 134 degrees, 65% saturation, 41% value

(c) 46 degrees, 10% saturation, 95% value

(d) 321 degrees, 10% saturation, 9% value
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(e) 321 degrees, 90% saturation, 9% value

Solution:

(a) 260 degrees, 35% saturation, 94% value
The 260 degree mark on the hue wheel is predominately blue with a good amount
of red as well. The very high value indicates a bright color, and the somewhat low
saturation indicates a washed out color. Blue-red combines, and with the saturation
and value, we expect a bright, washed out purple.

(b) 134 degrees, 65% saturation, 41% value
The 134 degree mark is primarily green, with a secondary of blue. The high saturation
indicates a vivid color, but the somewhat low value indicates a darker color. A darker,
vivid green (with a little blue) could best be described as forest green.

(c) 46 degrees, 10% saturation, 95% value
The 46 degree mark indicates a red domination with green as well. Red together with
green forms yellow. The low saturation indicates a very washed out color; combined
with the high value, this color will be nearly white. An off-white, slightly yellowish
will result.

(d) 321 degrees, 10% saturation, 9% value
The 321 degree mark is red with some blue. Note the very low saturation indicates a
washed out color, and the very low value indicates a very dark color. Together, the
low saturation and low value indicate this color will be (regardless of hue), essentially,
black.

(e) 321 degrees, 90% saturation, 9% value
Like the previous example, except the high saturation indicates a dark, vivid color.
Red with blue forms a shade of purple, so with the low value, we expect a very dark
purple.

3. Problem: Convert the HSV color with hue of 200 degrees, a saturation of 50%, and a value
of 85% to RGB.

Solution: The dominant RGB component, based on the hue categories, is blue, with a de-
creasing secondary component of green. The dominant RGB component (blue) will be
assigned the value, so B = 0.85, assuming a 0 through 1 scale for RGB to start with.

Next, we must calculate how far (as a percentage) through the current hue category the

color is. This can be found by calculating F =
H

60
−
⌊
H

60

⌋
=

200

60
−

⌊
200

60

⌋
= 3

1

3
− 3 =

1

3
.

The secondary RGB component, identified as green, is calculated using the decreasing for-
mula V − V SF . Therefore, G = V − V SF = 0.85− 0.85 ∗ 0.5 ∗ 0.33 = 0.85− 0.14 = 0.71.

Finally, the remaining component (red) is defined as R = V − V S = 0.85 − 0.85 ∗ 0.5 =
0.85− 0.43 = 0.42.
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The RGB tuple (0.42, 0.71, 0.85) can be converted into RGB code by first multiplying each
component by 255, and then rendering them as hexadecimal. The multiplication yields
(10710, 18110, 21710). We convert these values to hexadecimal, yielding (6B16, B516, D916)
which in turns gives an RGB code of #6BB5D9.

4. Problem: Convert the RGB color #274F07 into HSV.

Solution: First, we must convert RGB into a tuple of values 0 through 1. The RGB begins
as a hexadecimal tuple (2716, 4F16, 0716). Next, we convert these into decimal, yielding
(3910, 7910, 710), and then divide each by 255 to find a 0 through 1 range. The final RGB
tuple is (0.153, 0.31, 0.027).

The value is defined as the dominant RGB component, or V = max(R,G,B). The dominant
component in this color is green, so V = 0.31.

Next, we define the intermediate value D = V − min(R,G,B) (in other words, the differ-
ence between the largest and smallest RGB components). In this case, D = 0.31 − 0.027 =

0.283. With D, the saturation can be defined as S =
D

V
=

0.283

0.31
= 0.913.

We can determine the hue by first noting that green is dominant in this color, so

the green dominant hue formula will be applied: H = 60 ∗
(
2 +

B −R

D

)
= 60 ∗(

2 +
0.027− 0.153

0.283

)
= 60 ∗ (2 +−0.445) = 60 ∗ 1.555 = 93.3.

The final HSV values are 93 degrees hue, 91% saturation, and 31% value.

5. Problem: A large uncompressed, unpacked black and white (1 bit) raster image requires
about 100,000 bytes. If the image is instead stored as uncompressed, packed black and
white (1 bit), about how much space will be required?

Solution: Unpacked images store not more than one pixel per byte. Given that a byte is 8
bits, a packed 1 bit image could store eight times more data per byte than an unpacked 1 bit

image. Thus, the packed version of the above image can be stored in about
100000

8
= 12500

bytes.

6. Problem: An uncompressed 24-bit color raster image requires about 200,000 bytes. If an
8-bit alpha channel is added to the image, about how much space will the new image
require?

Solution: If each pixel is using 24 bits, that means each pixel uses 3 bytes. We can calculate

the number of pixels as about
200000

3
= 66, 666. Now, by adding an 8 bit alpha channel,

each pixel will use a total of 4 bytes. Thus, the approximate space required is now 66, 666 ∗
4 = 266, 664.



320 APPENDIX A | Solutions

Alternative Solution: Apply the formula 3 +
nwh

8
. The original image has 24-bit color, so

3 +
24wh

8
= 200, 000. The term wh will equal the total number of pixels in the image, so

solve for wh. This yields approximately wh = 66, 666. Next, with an additional 8 bit alpha

channel, the image size will be 3 +
(24 + 8)(66, 6666)

8
= 266, 667 bytes approximately.

7. Problem: An opaque background of color #3409AB is overlaid with the translucent ARGB
color #0F4A7A99. What is the resulting RGB display color?

Solution: The background color is opaque (has no alpha channel, or an alpha channel of
1), so apply the simplified formulas. First, convert the RGB codes of the top (foreground)
color into 0 through 1 ranges. The foreground color has red 4A16 = 7410/25510 = 0.29; green
7A16 = 12210/25510 = 0.48; blue 9916 = 15310/25510 = 0.6; alpha 0F16 = 1510/25510 = 0.06.
Thus, we can define (R0, G0, B0, A0) = (0.29, 0.48, 0.6, 0.06).

Likewise, the background color can be converted into the 0 through 1 ranges. The back-
ground color has red 3416 = 5210/25510 = 0.20; green 0916 = 910/25510 = 0.04; blue
AB16 = 17110/25510 = 0.67. Thus, we can define (R1, G1, B1) = (0.20, 0.04, 0.67).

We can calculate the resulting color using the simplified formulas R2 = A0R0 +(1−A0)R1,
and likewise for G2 and B2. The resulting color will have no alpha channel (or an alpha of
1), since one of the source colors is opaque.

Find R2 = A0R0 + (1− A0)R1 = 0.06 ∗ 0.29 + (1− 0.06) ∗ 0.20 = 0.02 + 0.19 = 0.21.
Next, find G2 = A0G0 + (1− A0)G1 = 0.06 ∗ 0.48 + (1− 0.06) ∗ 0.04 = 0.03 + 0.04 = 0.07.
Finally, find B2 = A0B0 + (1− A0)B1 = 0.06 ∗ 0.6 + (1− 0.06) ∗ 0.67 = 0.04 + 0.63 = 0.67.
Thus, the resulting color is (R2, G2, B2) = (0.21, 0.07, 0.67).

If desired, this color can be converted back into RGB code by multiplying each value by
255 and converting to hexadecimal. Thus, (0.21, 0.07, 0.67) ∗ 255 = (5410, 1810, 17110). Con-
verting each to hexadecimal yields #3612AB.

Note if this conversion is performed by computer the result will be slightly different due
to rounding. For example, when this overlap is performed in a popular image editing
program, the resulting color is #3510AA.

8. Problem: An ARGB color #B1A00591 is placed on top of another ARGB color #55667788.
The two colors are alpha blended; what is the resulting ARGB color?

Solution: First, convert each color into percentage values for each component. The first
mentioned color is placed on top, and the second on bottom (due to the “on top of” phrase).
Therefore, the first (top) color will be defined as (R0, G0, B0, A0).

The top color has red 6616 = 10210/25510 = 0.4; green 7716 = 11910/25510 = 0.47; blue
8816 = 13610/25510 = 0.53; alpha 5516 = 8510/25510 = 0.33. The bottom color has red
A016 = 16010/25510 = 0.63; green 0516 = 510/25510 = 0.02; blue 9116 = 14510/25510 = 0.57;
alpha B116 = 17710/25510 = 0.69. These values create the tuples for each color. The top
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color is (R0, G0, B0, A0) = (0.4, 0.47, 0.53, 0.33) and the bottom color is (R1, G1, B1, A1) =
(0.63, 0.02, 0.57, 0.69).

The blended alpha value, A2, can be calculated with the formula A2 = A0 +(1−A0)A1. Let
A2 = 0.33 + (1− 0.33)0.69 = 0.33 + 0.46 = 0.79.

For each primary component (red, green, and blue), the formula R2 =
A0R0 + (1− A0)(A1R1)

A2

can be applied.

Let R2 =
0.33 ∗ 0.4 + (1− 0.33)(0.69 ∗ 0.63)

0.79
=

0.13 + 0.29

0.79
=

0.42

0.79
= 0.53.

Next, G2 =
A0G0 + (1− A0)(A1G1)

A2

=
0.33 ∗ 0.47 + (1− 0.33)(0.69 ∗ 0.02)

0.79
=

0.16 + 0.01

0.79
=

0.17

0.79
= 0.22.

Finally, B2 =
A0B0 + (1− A0)(A1B1)

A2

=
0.33 ∗ 0.53 + (1− 0.33)(0.69 ∗ 0.57)

0.79
=

0.17 + 0.26

0.79
=

0.43

0.79
= 0.54.

Thus, the new color (R2, G2, B2, A2) = (0.53, 0.22, 0.54, 0.79). This color can be converted
into an ARGB code by multiplying each component by 255 and converting to hex. Thus,
(0.53, 0.22, 0.54, 0.79)∗255 = (13510, 5610, 13810, 20110) = (8716, 3816, 8A16, C916). Note that in
ARGB code the alpha value goes first, so the final code is #C987388A.
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A.14 Bitwise Operations and Masking

Exercises found in Chapter 14 on page 154.

1. Problem: Perform the following bitwise operations on 8 bit numbers:

(a) 5A16 & 9916

(b) 3B16 | 2716
(c) 4F16 ⊕ 3116

(d) ∼5F16

Solution:

(a) 5A16 & 9916
First, convert both operands into binary. Combine each bit positionally using the
AND operator (if both inputs are true, the result is true).

0101 1010
& 1001 1001

0001 1000

Finally, convert back into the original base 0001 10002 = 1816.

(b) 3B16 | 2716
First, convert both operands into binary. Combine each bit positionally using the OR
operator (if either input is true, the result is true).

0011 1011
| 0010 0111

0011 1111

Finally, convert back into the original base 0011 11112 = 3F16.

(c) 4F16 ⊕ 3116
First, convert both operands into binary. Combine each bit positionally using the XOR
operator (exclusive-Or: if either but not both inputs are true, the result is true).

0100 1111
⊕ 0011 0001

0111 1110

Finally, convert back into the original base 0111 11102 = 7E16.

(d) ∼5F16

In order to complete the complement, we must know the number of bits. The problem
told us eight bits, so we’ll be sure to allocate the appropriate number. Unlike the other
bitwise operators, the total number of bits must be known to arrive at the appropriate
answer to the NOT operator.
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∼ 0101 1111
1010 0000

Finally, convert back into the original base 1010 00002 = A016.

An online webservice for retrieving aerial photography indicates what kind of images are avail-
able in a certain area using flags. The documentation states that following types exist:

Image Type Flag Value (base 10)
B & W Photo 1
Topographic Map 2
Shaded Relief 4
Color Photo 8

2. Problem: For each of the following, find the appropriate flag value.

(a) The area has shaded relief and color photo available.

(b) The area has black and white photo, as well as color photo, available.

(c) The area has all four types of imagery available.

(d) No imagery is available for the area.

Solution: Starting with a decimal value of 0, add all the selected flag values.

(a) The area has shaded relief and color photo available.
4 + 8 = 12

(b) The area has black and white photo, as well as color photo, available.
1 + 8 = 9

(c) The area has all four types of imagery available.
1 + 2 + 4 + 8 = 15

(d) No imagery is available for the area.
A value of 0, which has no bits turned on, indicates that no flags are selected.

Alternative Solution: Convert each flag value into its binary equivalent.

Image Type Flag Value (Binary)
Black and White Photo 1
Topographic Map 10
Shaded Relief 100
Color Photo 1000

OR all selected flag values together.
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(a) The area has shaded relief and color photo available.
100 | 1000 = 11002 = 1210

(b) The area has black and white photo, as well as color photo, available.
1 | 1000 = 10012 = 910

(c) The area has all four types of imagery available.
1 | 10 | 100 | 1000 = 11112 = 1510

(d) No imagery is available for the area.
As before, a value of 0 indicates no flags are selected.

3. Problem: Determine which types of imagery are available given the following values.

(a) 1110

(b) 118

(c) F16

(d) 01102

Solution: First, convert each value into binary. Each 1 bit indicates the presence of a flag
value. Which flag value can be determined by comparing the position of the 1 bit to the list
of flag values. More formally, it is possible to AND a flag value against the number to find
out if the flag is present or not.

(a) 1110 = 10112. There are 1 bits in the 1, 2, and 8 position (binary place value), indicating
that black and white, topographic, and color images are available. Shaded relief is not
available; taking the binary value of shaded relief from the previous answer, we find
that 10112 & 1002 = 00002. A result of 0 indicates that flag is not set.

(b) 118 = 10012. There are 1 bits in the 1 and 8 position, indicating that black and white,
as well as color, images are available.

(c) F16 = 11112. All of the relevant bits are 1s, so all types of imagery are available.

(d) 01102. There are 1 bits in the 2 and 4 position, indicating that topographic map and
shaded relief types of imagery are available.

4. Problem: How many devices can participate in an IPv4 network with a netmask of
255.255.255.240? (Excluding the use of any gateways, etc.)

Solution: In binary, the netmask is represented as 1111 1111.1111 1111.1111 1111.1111 00002.
There are four zero bits, which indicate the bits that can change from one address to another
and still be inside the same netmask. The first 28 bits must stay the same between two
devices for those devices to directly communicate. Given that four bits are available to
enumerate devices, there can be up to 24 = 16 devices participating.
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Alternative Solution: Find the bitwise NOT of the netmask. ∼FFFFFFF016 =
0000000F16 =
1610 different devices.

5. Problem: If a device has an IPv4 address of 10.5.77.203, and a netmask of 255.255.255.252,
what is the range of IPv4 addresses it can directly communicate with?

Solution: The device IP address, in hexadecimal, is 0A054DCB16. The netmask is
FFFFFFFC16. Thus, the lowest IP address in the range can be found by AND’ing the
device IP with the netmask, and the highest address in the range can be found by OR’ing
the device IP with the complement of the netmask.

Lowest: 0A054DCB16 & FFFFFFFC16 =
0A054DC816 (10.5.77.200)

Highest: 0A054DCB16 | ∼FFFFFFFC16 =
0A054DCB16 | 0000000316 =
0A054DCB16 (10.5.77.203)

Thus, there are four possible IP addresses in the range, 10.5.77.200 through 10.5.77.203.

6. Problem: A pixel of color #45BC09 is exclusive-OR’d with a background pixel of color
#045A9F. What is the resulting color?

Solution: To find the new color, we must compute 45BC0916 ⊕ 045A9F16. Convert both to
binary.

100 0101 1011 1100 0000 1001
⊕ 100 0101 1010 1001 1111

100 0001 1110 0110 1001 0110

Converting back to hexadecimal, the resulting color is #41E696.

7. Problem: Using the XOR cipher, encrypt the UTF-8 phrase “Hello World” with the passcode
“aBc”.

Solution: First, determine the code point and UTF-8 representation of each character (refer-
ence the chapter on Unicode). Each symbol in both the plaintext and the passcode can be
represented with one byte (2 hexadecimal digits) in UTF-8. The plaintext is represented by
48656C6C6F 20 576F726C6416. The passcode is represented by 61426316.

To apply the XOR cipher, we need to repeat the passcode to match the length of the plain-
text.

48656C 6C6F20 576F72 6C64
⊕ 614263 614263 614263 6142

29270F 0D2D43 362D11 0D26
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There is no reason to suspect that the resulting encrypted text is valid under any particular
encoding, such as UTF-8. Thus, we leave it as a byte string.

Check: Decode the byte string 29270F 0D2D43 362D11 0D2616 with the passcode 61426316.

29270F 0D2D43 362D11 0D26
⊕ 614263 614263 614263 6142

48656C 6C6F20 576F72 6C64

Confirm that the resulting byte string is valid UTF-8, and represents the phrase “Hello
World”, which it does.

8. Problem: Using the XOR cipher, decrypt the content represented by 3A100E0F10091D16

using the UTF-8 passcode “xyz” and show the output using UTF-8.

Solution: The passcode “xyz” is represented in UTF-8 as 78797A16. Repeat the passcode
until it aligns with the encrypted text.

3A100E 0F1009 1D
⊕ 78797A 78797A 78

426974 776973 65

Refer to techniques for decoding UTF-8. This string decodes to “Bitwise”.
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A.15 Error Correcting Codes

Exercises found in Chapter 15 on page 167.

1. Problem: Find the Hamming Distance between the two messages 0101 10012 and 0111 10102.

Solution: The Hamming Distance is the number of positions in which two messages vary.
To find the Hamming distance, stack the messages and compare each bit column-wise to
see if it is equal or not. Count all positions where the bits are not equal.

0 1 0 1 1 0 0 1
0 1 1 1 1 0 1 0
= = ̸= = = = ̸= ̸=

There are three positions where the messages differ, thus they have a Hamming Distance
of three.

2. Problem: The following messages have an even parity bit appended to the end and were
transmitted over a possibly noisy channel, with at most one error. Determine which mes-
sages contain an error.

(a) 1111 11112

(b) 1010 10112

(c) 1111 00002

(d) 0000 00002

Solution: Even parity means that with the parity bit added, the number of 1s in the encoded
message should be an even number (0, 2, 4, ...). Count the total number of 1s in each
message to determine if it is even (no error) or odd (error).

(a) 1111 11112
Eight ones is even; no error.

(b) 1010 10112
Five ones is odd; error.

(c) 1111 00002
Four ones is even; no error.

(d) 0000 00002
Zero ones is even; no error.

3. Problem: Construct a logic circuit which accepts 4 data bits as input and indicates the correct
even parity bit for these four data bits.

Solution: The book notes that parity can be computing using XOR gates. Recall the defini-
tion of exclusive-OR is that it is true if one or the other, but not both, inputs are true. Thus,
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a 2 bit input set could be put into a single XOR gate to directly compute the even parity
of those two bits (because if both bits are 0, or both bits are 1, the output will be 0 and the
total number of 1s will be even; on the other hand, if one input is 1 and one input is 0, the
output is 1, bringing the total number of 1s to two, which is even).

This operation could be duplicated to bring the total to four inputs (as desired). However,
how can the two outputs be finally combined?

The output from the XOR gates can also be thought of as an indicator: false (0) means even,
true (1) means odd. If we have two blocks of two inputs each, then there are four ways they
could be combined:

Even + Even = Even
Even + Odd = Odd
Odd + Even = Odd
Odd + Odd = Even

This result, using truth values for even and odd, is itself nothing more than exclusive-OR.
Therefore, the individual two-bit outputs can be finally combined with an XOR to calculate
the even parity bit.
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4. Problem: The following messages, each with 8 data bits, have been encoded using the
Berger code and transmitted over a channel which may only convert 1s to 0s. Determine
which messages contain error(s).

(a) 0101 1001 01002

(b) 1101 0011 00012

(c) 0011 0111 00102

(d) 1110 0111 00102

Solution: Each message can be divided into data and error detection bits. The first eight
bits are data; the last four are error correction (check bits). To determine if a message has
errors, add up the number of 0s in the data and compare this value as an unsigned integer
to the remaining four bits.

(a) 0101 1001 | 01002
Four zeros found in data, so check is expected to be 410 = 01002. This matches, so no
error exists.

(b) 1101 0011 | 00012
Three zeros found in data, so check is expected to be 310 = 00112. However, the check
does not match, so one or more errors exist.

(c) 0011 0111 | 00102
Three zeros found in data, so check is expected to be 310 = 00112. However, the check
does not match, so one or more errors exist.

(d) 1110 0111 | 00102
Two zeros found in data, so check is expected to be 210 = 00102. This matches, so no
error exists.

5. Problem: Encode the following messages using the H(7,4) Hamming code.

(a) 00012
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(b) 00002

(c) 11102

(d) 10102

Solution: For each block of data, the three parity bits will be calculated and then the final
message constructed. Recall the parity bits are calculated p1 = d1⊕d2⊕d4, p2 = d1⊕d3⊕d4,
and p3 = d2 ⊕ d3 ⊕ d4. The message is then laid out with the pattern p1p2d1p3d2d3d4.

(a) 00012
Parity bits p1 = 0 ⊕ 0 ⊕ 1 = 1, p2 = 0 ⊕ 0 ⊕ 1 = 1, p3 = 0 ⊕ 0 ⊕ 1 = 1. The encoded
message is thus 11010012.

(b) 00002
Parity bits p1 = 0 ⊕ 0 ⊕ 0 = 0, p2 = 0 ⊕ 0 ⊕ 0 = 0, p3 = 0 ⊕ 0 ⊕ 0 = 0. The encoded
message is thus 00000002.

(c) 11102
Parity bits p1 = 1 ⊕ 1 ⊕ 0 = 0, p2 = 1 ⊕ 1 ⊕ 0 = 0, p3 = 1 ⊕ 1 ⊕ 0 = 0. The encoded
message is thus 00101102.

(d) 10102
Parity bits p1 = 1 ⊕ 0 ⊕ 0 = 1, p2 = 1 ⊕ 1 ⊕ 0 = 0, p3 = 0 ⊕ 1 ⊕ 0 = 1. The encoded
message is thus 10110102.

6. Problem: The following messages have been encoded with the H(7,4) Hamming code and
transmitted over a possibly noisy channel, with at most one error. Determine which mes-
sages contain an error. In all cases, find the original 4-bit message.

(a) 10101012

(b) 11111112

(c) 11100102

(d) 01101002

Solution: To detect and correct an error, the data and parity bits must first be separated.
Then, the expected parity bits will be computed and compared to the received parity bits.

(a) 10101012
The data bits are 11012, with parity r1 = 1, r2 = 0, r3 = 0. To detect an error, compute
parity p1 = 1 ⊕ 1 ⊕ 1 = 1, p2 = 1 ⊕ 0 ⊕ 1 = 0, and p3 = 1 ⊕ 0 ⊕ 1 = 0. Confirm that
r1 = p1, r2 = p2, and r3 = p3. Therefore, there is no error.

(b) 11111112
The data bits are 11112, with parity r1 = 1, r2 = 1, r3 = 1. Note that each parity bit
is calculated based on the exclusive-OR of three data bits. Since all data bits are 1,
the only possible parity setup is 1 ⊕ 1 ⊕ 1 = 1. Therefore, all parity bits must be 1 to
indicate no error. This is exactly the case seen, therefore, there is no error.
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(c) 11100102
The data bits are 10102, with parity r1 = 1, r2 = 1, r3 = 0. Compute parity p1 =
1 ⊕ 0 ⊕ 0 = 1, p2 = 1 ⊕ 1 ⊕ 0 = 0, and p3 = 0 ⊕ 1 ⊕ 0 = 1. Compare calculated parity
to received parity, and note that r1 = p1, but r2 ̸= p2 and r3 ̸= p3. The bit position
of the error is found by adding the positions of the non-matching parity bits, with 1
being the leftmost position: parity bit 2 is in position 2, and parity bit 3 is in position
4. The error is in bit 2+ 4 = 6 of the original message. To correct the error, flip this bit:
11100 0 02. The corrected data bits are 10002.

(d) 01101002
The data bits are 11002, with parity r1 = 0, r2 = 1, r3 = 0. Compute parity p1 =
1 ⊕ 1 ⊕ 0 = 0, p2 = 1 ⊕ 0 ⊕ 0 = 1, and p3 = 1 ⊕ 0 ⊕ 0 = 1. Compare calculated parity
to received parity, and note that r1 = p1 and r2 = p2, but r3 ̸= p3. The location of the
error is indicated by a sum of the positions of the erroneous parity bits. When only
one parity bit indicates an error, the position will be that parity bit itself. Thus, the
error in this message is actually in the third parity bit. To correct the error, flip the bit:
011 1 1002. However, this error does not change the data bits.
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7. Problem: Construct the array for the Hadamard code RM(16,5).

Solution: Each Hadamard array is based on three copies (one inverted, in the lower right)
of the previous array. The previous array, RM(8,4), is shown in the text.

00000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
00001 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
00010 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
00011 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1
00100 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
00101 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1
00110 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1
00111 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0
01000 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
01001 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1
01010 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1
01011 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0
01100 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1
01101 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0
01110 1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0
01111 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1
10000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10001 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
10010 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
10011 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
10100 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
10101 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0
10110 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0
10111 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1
11000 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
11001 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0
11010 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0
11011 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1
11100 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0
11101 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1
11110 0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1
11111 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0
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8. Problem: The following messages have been encoded using the RM(16,5) Hadamard code
and transmitted over a possibly noisy channel, with up to four errors. Determine which
messages contain error(s) and how many error(s) are present. In cases with up to three
errors, find the original 4-bit message. In cases with four errors, show why recovering the
original 5-bit message is not possible.

(a) 1010 1010 1010 10102

(b) 0111 1000 0000 01112

(c) 0011 1110 1100 00112

(d) 0011 1100 0011 00002

(e) 1000 1110 1101 01002

Solution: Find the Hamming Distance (number of positions where bits differ) between the
received message and each row in the RM(16,5) array. The row with the minimal Hamming
Distance (minimum number of positions where bits differ) indicates the corrected data bits.
In these solutions, highlighted bits are those that differ from the received encoded message.
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(a) 1010 1010 1010 10102
Find Hamming Distance for each RM(16,5) row.

00000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8
00001 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0
00010 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 8
00011 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 8
00100 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 8
00101 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 8
00110 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 8
00111 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 8
01000 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 8
01001 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 8
01010 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 8
01011 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 8
01100 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 8
01101 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 8
01110 1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 8
01111 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 8
10000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8
10001 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 16
10010 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 8
10011 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 8
10100 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 8
10101 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 8
10110 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 8
10111 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 8
11000 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 8
11001 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 8
11010 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 8
11011 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 8
11100 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 8
11101 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 8
11110 0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 8
11111 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 8

The row with the lowest Hamming distance corresponds to the correct message. The
Hamming distance itself indicates the number of errors. In this case, the message
000012 was received without error.
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(b) 0111 1000 0000 01112
Find Hamming Distance for each RM(16,5) row.

00000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 9
00001 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 9
00010 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 9
00011 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 9
00100 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 9
00101 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 9
00110 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 9
00111 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 9
01000 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 7
01001 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 7
01010 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 7
01011 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 7
01100 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 3
01101 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 11
01110 1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 11
01111 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 11
10000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7
10001 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 7
10010 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 7
10011 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 7
10100 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 7
10101 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 7
10110 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 7
10111 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 7
11000 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 9
11001 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 9
11010 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 9
11011 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 9
11100 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 13
11101 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 5
11110 0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 5
11111 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 5

The row with the lowest Hamming distance corresponds to the correct message. The
Hamming distance itself indicates the number of errors. In this case, the message
011002 was received with three errors (the maximum correctable by this particular
code).
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(c) 0011 1110 1100 00112
Find Hamming Distance for each RM(16,5) row.

00000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 7
00001 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 7
00010 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 9
00011 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 9
00100 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 9
00101 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 9
00110 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 7
00111 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 7
01000 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 7
01001 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 7
01010 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 9
01011 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 9
01100 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 9
01101 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 9
01110 1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 15
01111 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 7
10000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9
10001 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 9
10010 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 7
10011 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 7
10100 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 7
10101 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 7
10110 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 9
10111 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 9
11000 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 9
11001 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 9
11010 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 7
11011 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 7
11100 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 7
11101 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 7
11110 0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 1
11111 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 9

In this case, the message 111102 was received with one error.
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(d) 0011 1100 0011 00002
Find Hamming Distance for each RM(16,5) row.

00000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10
00001 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 8
00010 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 10
00011 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 8
00100 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 6
00101 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 8
00110 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 14
00111 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 8
01000 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 6
01001 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 8
01010 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 6
01011 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 8
01100 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 10
01101 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 8
01110 1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 10
01111 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 8
10000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6
10001 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 8
10010 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 6
10011 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 8
10100 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 10
10101 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 8
10110 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 2
10111 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 8
11000 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 10
11001 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 8
11010 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 10
11011 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 8
11100 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 6
11101 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 8
11110 0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 6
11111 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 8

In this case, the message 101102 was received with two errors.
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(e) 1000 1110 1101 01002
Find Hamming Distance for each RM(16,5) row.

00000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8
00001 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 8
00010 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 4
00011 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 8
00100 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 8
00101 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 8
00110 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 8
00111 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 4
01000 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 8
01001 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 4
01010 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 8
01011 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 8
01100 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 12
01101 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 8
01110 1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 8
01111 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 8
10000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8
10001 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 8
10010 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 12
10011 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 8
10100 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 8
10101 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 8
10110 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 8
10111 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 12
11000 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 8
11001 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 12
11010 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 8
11011 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 8
11100 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 4
11101 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 8
11110 0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 8
11111 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 8

The row with the lowest Hamming distance corresponds to the correct message. The
Hamming distance itself indicates the number of errors. In this case, however, there is
no single row with the lowest Hamming distance. Instead, three rows, 000102, 001112,
010012, and 111002 all share the same Hamming distance of four. With no additional
information, we are unable to determine the correct original message from this group
of candidates, and so four errors cannot be corrected.



SECTION A.16 | Digital Logic 339

A.16 Digital Logic

Exercises found in Chapter 17 on page 195.

1. Problem: Using the logical expressions for the half adder (s = a⊕ b and c = a∧ b), prove the
correctness of the construction of the full adder based on two half adders and an OR gate.

Solution: The diagram shows how two half adders and an OR gate were combined to form
a full adder:

We can define the outputs s and c with respect to the half adders. Let h1 and h2 represent
the two half adders. The respective sum and carry outputs from can further be represented
as h1s, h1c, h2s, h2c.

Following the circuit diagram, we can define h1s = a ⊕ b, h1c = a ∧ b, h2s = h1s ⊕ c, and
h2c = h1s ∧ c respectively. The final results can be defined as sout = h2s and cout = h1c ∨ h2c.

Expanding the definition of sout and cout by substitution yields sout = h1s ⊕ c = a ⊕ b ⊕ c
and cout = h1c ∨ h2c = (a ∧ b) ∨ (h1s ∧ c) = (a ∧ b) ∨ ((a⊕ b) ∧ c).

Recall the table for three bit addition:

0 + 0 + 0 = 0
0 + 1 + 0 = 1
0 + 0 + 1 = 1
0 + 1 + 1 = 10
1 + 0 + 0 = 1
1 + 1 + 0 = 10
1 + 0 + 1 = 10
1 + 1 + 1 = 11
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Rewrite this sum series as a truth table.

a b c Carry Sum
F F F F F
F T F F T
F F T F T
F T T T F
T F F F T
T T F T F
T F T T F
T T T T T

To prove that the given circuit implements this truth table, determine the values of sout and
cout and show that they match Sum and Carry. The value of sout is true whenever an odd
number of inputs are true (given the nature of XOR).

a b c Carry Sum cout sout

F F F F F F
F T F F T T
F F T F T T
F T T T F F
T F F F T T
T T F T F F
T F T T F F
T T T T T T

The Sum output matches sout. Consider that cout is true whenever both a and b are true;
and also when c is true and at least one of a or b is true.

a b c Carry Sum cout sout

F F F F F F F
F T F F T F T
F F T F T F T
F T T T F T F
T F F F T F T
T T F T F T F
T F T T F T F
T T T T T T T

The Carry out matches cout. Thus, the construction of the full adder is proven correct.
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2. Problem: Extend the four bit comparison circuit shown in the chapter to have three outputs:
one for a < b (existing), one for a = b, and one for a > b. As much as possible, re-use the
existing circuit.

Solution: The given circuit shows one output, which is true when a < b. How can a = b be
determined? Note previously that XNOR was used for equality. Investigating the existing
circuit, we can see that several XNOR gates using appropriate input pairs already exist.
We need only to add an additional XNOR for the rightmost bit, and then combine all four
XNORs together with an AND. If all four XNORs are true, the input are equal.

Now that we have a < b and a = b, how can a > b be found? No real additional work is
necessary: simply note that a > b is true if and only if neither a < b nor a = b.

The revised circuit is shown. A box indicates the new gates, which include only one AND,
one NOR, and one XNOR.

3. Problem: A multiplexer is a logic circuit that has n select inputs and 2n data inputs. The data
input corresponding to the given select value is sent to the single output line. Implement
a 4 to 1 multiplexer; that is, a multiplexer with 4 data inputs and one output.
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Solution: Using the 2 to 4 decoder, we must set n = 2, as the decoder has 2 select inputs
and 4 individual “values”. For each output of the decoder, we can AND it with the corre-
sponding input to the multiplexer, and then OR all the results together.

This will work because only one (and exactly one) output from the decoder will be true.
The rest will be false. The false outputs will also result in a false out of an AND gate; the
true output will then pass through that particular input value. The OR gate will, at most,
have one true input.

Using the decoder as a module, a 4 to 1 multiplexer can be constructed around it. In this
case, the multiplexer is shown with input 102 = 210 selected. Input 2 is true, so the output
is true.

4. Problem: A clocked T Flip-Flop (T stands for Toggle) has two inputs: T and Clock. It will
invert its output if the T is true on the clock edge.

(a) Implement a T Flip-Flop.

(b) If the T input is held true, the output of the T Flip-Flop should alternate at half the
rate of the clock input. Confirm this behavior in your implementation.

Solution: A T Flip-Flop should alter its state based on the request of the toggle input and
of the current data. In order to discover the implementation of a T Flip-Flop, first consider
what behavior it should have. If the toggle request is false, then the new value should
match the current value (no change). If the toggle request is true, the new value should be
the opposite (toggle) of the current value.
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Toggle Current Value New Value
T T F
T F T
F T T
F F F

What operator does this table reflect? It is equivalent to the XOR operator.

We can then build the T Flip-Flop based on an existing D Flip-Flop. The Data input D will
be the XOR of the toggle input and the current Q data output.

To verify the operation of halving the clock speed, observe the behavior of the Q output
when the toggle input is held true and the clock is alternated.

Initial condition (CLOCK down) CLOCK up

CLOCK down CLOCK up

Another approach to verify the behavior is to graph the values of the clock (bottom) and
the Q output (top) of the T Flip-Flop. Notice that the output alternates at half the rate of
the clock input.
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5. Problem: Implement an addressable memory bank. Provide for four storage locations (ad-
dressable by two bits), with four bits of data held in each storage location. When an address
is selected, the current value in that location should be provided. It should also be possible
to set a value into the addressed location.

Solution: A significant sequence of steps will be required to implement this specification.
First, a four bit memory cell must be devised. The four bit memory cell can be implemented
using 4 D Flip-Flops. The data inputs and outputs will go to four data inputs and four data
outputs, and all the clock inputs will be synchronized to a single “Set” input.

The basic construct of the memory system involved four of these four bit memory cells.

To retrieve a value from memory, we will also need four multiplexers, one for each bit in a
memory cell. Each multiplexer will need four inputs, one for each memory cell. Thus the
multiplexers will be used to select which memory cell to retrieve from. These will then be
connected to the output.

A selector (2 bit) will be needed to indicate which of the four memory cells to read/write
from/to. The selector will connect to the multiplexers to indicate which memory cell is in
use.

In order to set a value into memory, a set command (which will serve as the clock), and a
decoder which will route the set command to the right 4 bit memory cell, will be needed.
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Additionally, a 4 bit data input block will be required. The decoder will use the same
selector as the output to route the value to a memory cell.

The pre-connection mockup of the 16 bit (4 by 4) memory grid can be prepared:

First, we will connect the data input to each respective position on the memory cells. The
leftmost bit of input will connect to the leftmost input bit on each of the 4 bit memory cells.
We see this first with just the leftmost bit connected:

Then with all input bits connected to their respective targets.
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Next, the memory cell outputs can be connected to the multiplexers. Each memory cell
will connect to each multiplexer; the left most bit on each memory cell will connect, in
sequence, to the leftmost multiplexer, and so on. The second bit from the left is shown here
connected to the second multiplexer.

To see the implication of this connection, recall that each 4 bit memory cell is composed of
four D Flip-Flops. The multiplexer cuts across a “row” of flip flops to extract the overall
value of that bit. Here is the same circuit, with the memory cells expanded to be their
representative flip flops, and the specific multiplexer highlighted, with the flip flops it
references.
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We will connect the remaining multiplexers likewise. The pattern appears to be a cross
weave due to the nature of the connections.

Next, connect the selector to each multiplexer. This tells each multiplexer which memory
cell to select from. Recall that each multiplexer is connected to each memory cell, so they all
need to know which of those memory cells actually contains the value of current interest.



348 APPENDIX A | Solutions

To set a value into memory, the decoder can be prepared to cause the “Set” input on one
of the four bit memory cells to become true. The AND gates are added so that simply en-
tering the value into the selector is not sufficient (otherwise memory would always update
whenever a different cell was selected).

In order to perform an order, the Set command must be given. The set command will be
wired to each AND gate to enable the signal to pass on to the clock on the respective 4 bit
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memory cell. Finally, the AND gates will connect to the “Set” input of each 4 bit memory
cell.

To enter a value into memory:

(a) Enter the 2 bit address into the selector.

(b) Enter the new 4 bit value into the input at the top.

(c) Press the Set command (S).

(d) Release the Set command.

(e) The output will now show the specified value whenever the selector indicates that
cell.

To read a value from memory, simply update the selector, and then appropriate value will
appear in the output.

Consider the four bit add/subtract circuit shown earlier in the chapter.

6. Problem: Show how the circuit processes the following inputs. Is the result correct or not?
If not, why not?

(a) 01012 + 00112

(b) 01012C + 01002C
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(c) 01012C − 00012C

(d) 11102 + 11002

(e) 11102C + 11002C

(f) 10102C − 11002C

Solution: For each value, examine the circuit and its result.

(a) 01012 + 00112

The adder correctly determines that 01012 + 00112 = 10002.

(b) 01012C + 01002C



SECTION A.16 | Digital Logic 351

The adder claims that 01012C + 01002C = 10012C . However, this is not correct. In
decimal, the claim is that 5 + 4 = −7. We can see that this claim is false because both
inputs are positive, but the result is negative. The reason for this fault is that four
bit Two’s Complement cannot represent numbers larger than 7. The correct answer
would be 9, but it exceeds the maximum positive value and so the value rolls over
into negatives.

(c) 01012C − 00012C

The adder successly calculates that 01012C − 00012C = 01002C .

(d) 11102 + 11002

The adder claims that 11102 + 11002 = 10102. However, this is not correct. In deci-
mal, the claim is 14 + 12 = 10. The addition fails because unsigned four bit numbers
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can only represent the range zero through fifteen. The actual result, 26, is not repre-
sentable.

(e) 11102C + 11002C
Notice that the actual function of the adder is identical to the previous statement.
In this case, we simply interpret the inputs and results differently. The claim that
11102C + 11002C = 10102C is now valid and correct. Now the decimal claim is that
−2 + (−4) = −6.
In general, an operation that may be correct in unsigned values may be incorrect in
signed values, and vice versa.

(f) 10102C − 11002C

Here the adder claims that 10102C − 11002C = 11102C . In decimal, this claim is
−6 − (−4) = −2. Although these two values could not be added together success-
fully (as the result would be -10, exceeding the representation range of four bit Two’s
Complement), they can be subtracted, with a correct result.

7. Problem: Devise an improvement to this circuit that will detect if an addition or subtraction
result is incorrect due to insufficient bits to represent the result. Assume all values are
Two’s Complement.

Solution: As indicated in the text, the overflow result is not meaningful when dealing with
Two’s Complement. Another technique for detecting errors must be devised.

First, consider the possible correct output numbers based on the inputs. Note that if the
two inputs have the same sign, the output should match that sign. That is, if two positives
are added, the result should be positive. Likewise, if two negatives are added, the result
must be negative. We can thus consider a check which confirms this signage, and reports
an error if two numbers of the same sign incorrectly create a result of the opposite sign.
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However, we must also consider the case when the two numbers being added are not the
same sign. In that case, the result sign could be either positive or negative.

Input 1 Sign Input 2 Sign Output Sign Should Be
+ + +
+ - ?
- + ?
- - -

In order to address the case when a positive number is added with a negative number, we
must first determine if any error is actually possible in these. When a positive and nega-
tive are added, the result is always between those two extreme values (it cannot be more
negative or positive than the original inputs). Thus, if the inputs are both representable, all
values between them are also representable and so no error is possible in those cases.

Input 1 Sign Input 2 Sign Error Possible?
+ + Yes
+ - No
- + No
- - Yes

We now need to only consider the case when the signs are the same. In that case, if the
output has a different sign than the input, an error has occurred. We can first use an XNOR
gate (equality) to check if both the signs are equal by taking the leftmost bits from each
input (on the right, be sure to use the bit from the inverter). This result will give true if
equal and false if not.

Next, we can use another XNOR gate to check if the sign bit of the output from the adder
is equal to either sign bit from the input (since the input sign bits must also be equal).

With these, what decision can we make?

Input Sign Equal Input/Output Sign Equal Error?
T T F
T F T
F T F
F F F

An error exists only when the input signs are equal, and the input/output signs are not
equal. This condition can be established with an AND and a NOT gate on the two inter-
mediate equalities. Finally, for input/output sign equal, note that we are taking the output
of a XNOR and putting it into a NOT gate. An XNOR followed by a NOT gate is simply
XOR.
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8. Problem: Alter the four bit add/subtract circuit. Remove one of the inputs and replace it
with four bits of memory. Add an accumulate button which updates the memory to be
increased or decreased, as selected, by the amount of the input.

Solution: We will use the four bit memory defined previously in this chapter. In order to
construct an accumulator, the output of the adder must become the input to the memory.
The output from the memory then goes back into the adder. In addition, the final numeric
output must now be read from the memory instead of the adder, to avoid fluctuations as
the remaining input value is changed.
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A.17 Flowcharts

Exercises found in Chapter 19 on page 222.

1. Problem: Convert the 12 eggs counting loop example into pretest while loop style.

Solution: The order of steps will precisely follow the order shown in the original counting
loop. First, the initialization block must be executed (setting Egg = 1). Next, the loop
condition will check to see if egg is in the range (12 or less). The loop body will then
execute, and finally the egg counter will be updated. The loop condition will then be
checked again. Compare the original counting loop with the pretest while loop style and
note the direct correspondence.

Counting Loop Pretest While Loop

2. Problem: Write a flowchart that calculates the average (mean) of a list of numbers.

Solution: The average (mean) is defined as the sum divided by the number of elements.
We will use both a counter and an accumulator, and read the values one at a time from
the input. When each value is read, it will be added to the total (the accumulator) and the
count will be increased by 1. When there are no more values, the total will contain the sum
and the count will indicate the number of values. A division can then be used to find the
mean.

Alternative Solution: We will input the entire list up front and use a counting loop to traverse
it. Each element in the list will be accessed by index (with index 0 being the first element)
and accumulated into a total.
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One Value at a Time Whole List Up-Front
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3. Problem: Write a flowchart that determines
whether or not a given list of numbers is in sorted
order from smallest to largest.

Solution: It is not necessary to create a nested loop
and compare every item to every other item. In-
stead, if each adjacent pair of items is in sorted
order, then the entire list is in sorted order. Con-
sider a list which has items a, b, and c in that or-
der. If a ≤ b and b ≤ c, then it must also be true
that a ≤ c. This property (known as transitivity)
continues to hold as the size of the list increases.

We will start by assuming the list is sorted; and
if we find even one case where items are out of
order, we will conclude it is NOT sorted. We will
read an initial value and then a next value (be-
cause we need two values to compare). If the later
value is less than the initial value, then the list is
not in sorted order. As long as more items exist,
we compare the next pair: the current value be-
comes the initial value, and a new next value is
read in.

There is also a special case to consider: in order
for the above procedure to work, the list must
contain at least two elements. What about a list
that contains no elements, or only one element?
In these cases, the list must be sorted. There is no
way for a list to be out of sorted order if it con-
tains less than two elements. So if there are less
than two elements, we skip the whole procedure.
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4. Problem: Write a flowchart that, given a list, out-
puts the list in reverse.

Solution: For example, assume the input list is
1, 3, 5, 4, then the output list will be 4, 5, 3, 1. To
accomplish this, we will read in the entire list up
front. Then, using a counting loop, we will tra-
verse the list backwards (starting at the end and
going to the beginning). At each step, the value
will be appended onto a new list, so that the last
value in the original list is the first value placed
on the new list, and so on.

Be sure to note the changes to the normal count-
ing loop: the loop index is initialized to size - 1
instead of 0 (the minus 1 is because indices start
at 0, so the if the list has 3 elements, the last in-
dex is 2). At each iteration, this index value is
decreased by 1 (instead of increased) to move to-
ward the beginning of the list. After index 0 is
processed, the loop exited.
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5. Problem: The Fibonacci sequence is a list of num-
bers, where each number is derived by adding
the previous two together. The first two numbers
in the sequence are 1. The first eight Fibonacci
numbers are 1, 1, 2, 3, 5, 8, 13, 21.

Write a flowchart that given a position num-
ber, outputs the corresponding Fibonacci num-
ber. For example, if the position is 1 or 2, the
Fibonacci number is 1. If the position is 6, the
Fibonacci number is 8, and so on.

Solution: Given that each Fibonacci is defined as
the sum of the previous two, we can compute
the sequence incrementally, always maintaining
a record of the two most recent Fibonacci num-
bers. When we reach the position desired, we
stop computing and output that value.

The first two numbers themselves can be consid-
ered special cases; if the desired position is 1 or 2,
we will simply output 1. For other cases, a loop
can be used. We start the third position as being
based on the previous two values (both 1). Then,
at each loop iteration, a new sum is computed by
adding the previous two together. We then put
the computed sum as the most recent previous
Fibonacci number and the loop repeats.

In order to manage how many times the loop
should repeat, a counting loop based on the de-
sired position can be used. Note that the ini-
tial value is not 0, but 3, since the first iteration
through the loop calculates the third position (if
the previous two values are initialized to 1).

The order in which the previous values are stored
is significant: in order to avoid duplicating or los-
ing a value, we must first shift the “one step old”
value into the “two step old” position, and then
shift the most recent value into the “one step old”
position.
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6. Problem: Consider the Fizz-Buzz problem, a small programming challenge proposed for
use in job interviews. Write a flowchart that prints the numbers from 1 to 100. But for
multiples of three print ”Fizz” instead of the number and for the multiples of five print
”Buzz”. For numbers which are multiples of both three and five print ”FizzBuzz”.

Solution: We need to loop, using a counting loop, through all values in the range of 1 up
through 100. If the number is a multiple of three or five or both, then a special message is
output. Otherwise just the number is output.

For each value, we first check if it is a multiple of both 3 and 5 (this can be determined by
checking if the number is evenly divisible by 3 and 5, a condition easily checked by the
computer). If it is a multiple of both, we output “FizzBuzz”. Only if it is not a multiple
of both do we check the individual conditions. Finally, if the number is not a multiple of
interest, then we simply output the number itself.

Note: to say a number is a multiple of both three and five means that it is multiple of 15
(because 3 ∗ 5 = 15). Therefore, the condition that the number is a multiple of both three
and five could be replaced with a single condition that the number is a multiple of 15.
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Alternative Solution: Rather than having three different outputs, we can note that the “both”
case is a composite of the two individual cases (3 = Fizz, 5 = Buzz, both = FizzBuzz). Thus,
we can sequence two if blocks, one for multiple of three, and one for multiple of five, and
have each output the respective portion. If the number is a multiple of both three and five,
both blocks will be run and so the total message FizzBuzz will be output.

The only possible difficulty is ensuring that the number is output only when appropriate;
we can’t do an else on either of the if statements, as the other may still be true. Thus,
we need to wrap the entire Fizz/Buzz generator in an if to see if we should even try the
multiples or not.

If the number is a multiple of 3, or a multiple of 5 (or both), then we know it is ok to check
for Fizz and/or Buzz. However, if the number is not any of those multiples, we skip to
outputting the number itself.
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7. Problem: Assume a, b and c are Boolean variables; determine a logical expression for the
following flowchart.

Solution: The easiest way to create an expression from a complex flowchart such as this one
is to first generate a truth table, then convert the truth table into an expression.

First, start with an empty truth table. Note that there are three variables in the flowchart
so the truth table will also have three input variables, and thus eight rows.

a b c result
T T T
T T F
T F T
T F F
F T T
F T F
F F T
F F F

Given that a claim like “a is false” is the same as ¬a, the first decision can be rendered as
¬a ∧ (b ∨ ¬c). All of the rows where this expression is true will be determined by the left
side of the flowchart; all of the rows where this expression is false will be determined by
the right side of the flowchart.

Start by marking all rows which meet the initial expression. The value of these marked
rows we will determine by analyzing the left side of the flowchart.
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a b c result
T T T
T T F
T F T
T F F
F T T
F T F
F F T
F F F

The left side of the flowchart gives us the expression b ∧ c. Are there any rows highlighted
which meet this criteria? If so, according to the flowchart, they have the output of false. Of
the three marked rows, the first one meets the criteria (it has a as false, b as true, and c as
true). The remaining two marked rows will have the output of a. In both remaining cases,
we will copy the value of a in each row into the result.

a b c result
T T T
T T F
T F T
T F F
F T T F
F T F F
F F T
F F F F

What of the other, unmarked rows? They must be solved using the right side of the
flowchart. The value of these rows will be decided on the basis of b. First, select those
remaining rows in which b is true (do not update already completed rows: they are not
subject to this portion of the flowchart).

a b c result
T T T
T T F
T F T
T F F
F T T F
F T F F
F F T
F F F F

According to the flowchart right portion, when b is true, the result output is the value of c.
So in the highlighted rows, we will simply copy the value of c into the result.
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a b c result
T T T T
T T F F
T F T
T F F
F T T F
F T F F
F F T
F F F F

Finally, in the remaining rows, the flowchart indicates the value ¬c is the result. So we will
write the opposite of c into result for each remaining row (that is, if c is true, we write false,
and vice versa).

a b c result
T T T T
T T F F
T F T F
T F F T
F T T F
F T F F
F F T F
F F F F

Given this complete truth table, we can find a logical expression using disjunctive normal
form and simply extracting the true rows. If desired, the expression could be simplified
using the Boolean simplification rules.

The resulting expression (unsimplified) is (a ∧ b ∧ c) ∨ (a ∧ ¬b ∧ ¬c).
Alternative Solution: Build an expression based on each side of a decision. For each decision,
represent the condition with some variable v. Then, construct an expression L for the true
side of the decision and an expression R for the false side of the decision. Combine these
with the total expression (v ∧ L) ∨ (¬v ∧R). Substitute in the definitions of v, L, and R.

To apply this technique, the root expression v = ¬a∧(b∨¬c). To find the left expression, per-
form the technique recursively. The left decision condition is vL = b ∧ c. The two branches
of this left decision can be combined, as shown above, to form (vL ∧ LL) ∨ (¬vL ∧ LR). In
this case, LL = F and LR = a. Thus, the left side of the flowchart may be represented as
L = ((b ∧ c) ∧ F ) ∨ (¬(b ∧ c) ∧ a).

Likewise, to find the right expression, we will note the right decision condition is vR = b,
with RL = c and RR = ¬c. As above, these combine to form R = (b ∧ c) ∨ (¬b ∧ ¬c).
With these sub-expressions, we can assemble the final expression using the original pattern
and the values for v, L, and R that have been discovered. The complete expression is
((¬a ∧ (b ∨ ¬c)) ∧ (((b ∧ c) ∧ F ) ∨ (¬(b ∧ c) ∧ a))) ∨ (¬(¬a ∧ (b ∨ ¬c)) ∧ ((b ∧ c) ∨ (¬b ∧ ¬c))).
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This expression could be simplified using Boolean simplification rules, or by constructing
a truth table and extracting an expression from it.

8. Problem: Create a step-by-step version of the flowchart from the previous problem, using
only one variable per decision condition (in other words, no AND or OR).

Solution: Start with a Boolean expression representing the output of the previous flowchart.
As shown in the previous solution, the expression (a∧b∧c)∨(a∧¬b∧¬c) is equivalent to the
flowchart’s output. Notice that both cases require a to be true; that is, by the distributive
law, we could rewrite this expression as a ∧ ((b ∧ c) ∨ (¬b ∧ ¬c)).
Start by splitting on the value of a; if a is false, then the output is false. If a is true, however,
then we must consider our next step. Given that a is true, then the output will be true if b
and c are equal (both true, or both false). We can save some space by taking advantage of
this relationship. We can evaluate one of the variables (in this case we’ll choose b but there
is no significance to that choice), and if it is true, output the value of the other variable (c).
On the other hand, if b is false, we can output ¬c. This establishes the b∧c or ¬b∧¬c options
without another level of nested decisions.

Alternative Solution: Begin as before. However, given the expression a∧ ((b∧ c)∨ (¬b∧¬c)),
another transformation is possible (alluded to in the previous solution).

1. a ∧ ((b ∧ c) ∨ (¬b ∧ ¬c)) Initial Expression
2. a ∧ ((b ∧ c) ∨ (¬b ∧ ¬c)) DeMorgan’s Law
3. a ∧ ((b ∧ c) ∨ ¬(b ∨ c)) Double Negation
4. a ∧ ¬¬((b ∧ c) ∨ ¬(b ∨ c)) DeMorgan’s Law
5. a ∧ ¬(¬(b ∧ c) ∧ ¬¬(b ∨ c)) Double Negation
6. a ∧ ¬(¬(b ∧ c) ∧ (b ∨ c)) Definition of exclusive OR
7. a ∧ ¬(b⊕ c) Definition of equality
8. a ∧ (b ↔ c) Final Expression

Now the relationship b ↔ c is explicit and may be embedded directly into the flowchart.
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A.18 Analysis of Algorithms

Exercises found in Chapter 20 on page 236.

1. Problem: Two algorithms have been created to process input records. The first algorithm
processes 100 records in 13 seconds. On the same computer, the second algorithm processes
100 records in only 8 seconds. Which algorithm will perform faster on 200 records?

Solution: Unable to tell. A single data point is not enough information to determine the al-
gorithm’s time complexity. At least two data points are needed to distinguish constant
from linear time algorithms, and more are needed to distinguish the other complexity
classes.

2. Problem: One algorithm was step-counted and found to complete in 4n + n2 + log n steps
(with input size n). A second algorithm was step-counted and found to complete in 2n3+4
steps (with input size n). Which algorithm has the better time complexity?

Solution: In each case, the time complexity of an algorithm is determined by the most
significant term. In the equation 4n+ n2 + log n, the most significant term is n2, so the first
algorithm is O(n2). In the equation 2n3+4, the most significant term is 2n3. Coefficients are
dropped in time complexity, so this algorithm is O(n3). The first algorithm has the better
time complexity.

3. Problem: Find the time complexity of the following algorithm:

(a) Input a and b as positive whole numbers

(b) Let n be the larger of a and b

(c) If a÷ n is a whole number, AND

(d) If b÷ n is a whole number, return n as the answer.

(e) Otherwise, modify n = n− 1

(f) Go to line (b)

Solution: We will use the loop analysis technique. Repetition exists in lines (b) through
(f), which repeat until certain conditions are met. Eventually, as n is decremented, the
condition a÷1 and b÷1 will be reached when n reaches 1. This is true because for any pos-
itive whole number, if it is divided by 1, the result will be itself, a positive whole number,
which meets the algorithm’s check criteria. How many times will this sequence of steps (b)
through (f) repeat? It may stop at any time, but in the worst case (we are always interested
in the worst case for our analysis), n might have to travel all the way down to 1. Due to
the fact that n decreases by 1 at each step, this could result in up to n total runs through the
loop. Thus, this algorithm is O(n), linear time.
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4. Problem: Find the time complexity of Euclid’s Algorithm.

Solution: Recall Euclid’s Algorithm:

(a) Input a and b as positive whole numbers

(b) If b equals 0, return the answer a

(c) Save b in a temporary variable t

(d) Update b to be the remainder of a÷ b

(e) Update a from t

(f) Go to line (b)

The loop analysis technique works for this example as well. Note that the repetition exists
in lines (b) through (f). This repetition is based primarily on b (reaching zero will end the
loop). Each iteration modifies both a and b, and, in a sense, swaps them, as a becomes
the previous value of b, and the new value of b is derived from a using the remainder of a
division.

The largest remainder will occur when b is large and a is b − 1. In this case, however, a
takes on the previous value of b and the algorithm ends in the next step. In other cases,
some additional steps are needed, but it seems like the input is not being consumed by
a fixed amount (as in the previous problem) but is being consumed by division, getting
quickly smaller at each step. An algorithm which divides the input at each step is usually
logarithmic time O(log n). There is a problem, however. There is no n defined in this
problem, so we must be careful to express the time complexity in terms of the actual input.

We are not attempting to be precise with a tight upper bound, so simply noting that both
inputs have the same division effect is sufficient. We’ll call it O(log(ab)).

(Note: detailed mathematical studies of this version of Euclid’s algorithm have proven that
the worst-case time complexity is O(log10 min(a, b)). )

Both this algorithm and the algorithm in the previous problem find the greatest common
factor of two numbers. This version of Euclid’s algorithm, however, has a better time
complexity.
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5. Problem: Find the time complexity of the follow-
ing algorithm:

(a) Let itemi represent the ith item in a list of n
numbers, with item0 being the first element.

(b) Let k = 0

(c) If k = n then return true

(d) Let z = 0

(e) If z = k then go to line (i)

(f) If itemz > itemk then return false

(g) Update z = z + 1

(h) Go to line (e)

(i) Update k = k + 1

(j) Go to line (c)

Solution: This algorithm has a lot of “go to”s! In
order to get a better grip on what is happening,
transform the algorithm into a flowchart. This
example was shown previously in the chapter on
flowcharts. The resulting flowchart is reproduced
here.

From the flowchart, it is possible to see that the al-
gorithm consists of a nested loop pair. The outer
loop, based on k, increments by a constant and
loops up to the size of the input, so this outer loop
is linear. The inner loop, based on z, increments
by a constant, but only loops up to k. How can
we handle this? Although k is not the input size,
it increments up to the input size, so we can con-
sider z to be based on the input as well. Nested
loops, both incrementing a constant amount and
both based on the input size, gives a time com-
plexity of O(n2), quadratic time. Note that the de-
cision in the heart of the loops is itself not a loop,
so this does not count as a triple-nested loop.
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6. Problem: Devise an alternative, more efficient, algorithm which computes the same result
as the algorithm given in the previous problem. Find the time complexity of the improved
algorithm.

Solution: In order to solve this problem, a detailed understanding of the previous algorithm
is needed: not just how it is structured, but what it is trying to accomplish. The output of
the algorithm is a single true/false variable, result. This result is treated as a flag: it starts
true, but once turned false, it stays false. So the algorithm is looking for the presence of a
certain condition. The result is true if that condition is not found, or false if the condition
is found. What condition? The condition itemz > itemk. Looking at the loop for z and k,
notice that the loop condition is z < k.

Therefore, this algorithm is searching for any pair of items in the list, where the earlier item
is greater than the latter item. In other words, this algorithm is checking if a list is in sorted
order or not. The result is true if the list is sorted; the result is false if the list is not sorted.
The algorithm makes no attempt to actually sort the list.

In order to create a better algorithm for this task (determining if a list is sorted), we can note
that it is not necessary to compare all pairs (which the previous algorithm does). Instead,
we need only compare adjacent elements. If a list is not in sorted order, there will be some
adjacent elements which themselves are out of order. This can be done in a single loop,
considering each item and its successor.

(a) Let itemi represent the ith item in a list of n numbers, with item0 being the first ele-
ment.

(b) Let k = 0

(c) If k >= n− 1 then return true

(d) If itemk > itemk+1 then return false

(e) Update k = k + 1

(f) Go to line (c)

To find the time complexity of this algorithm, examine its loop. There is a single loop, from
items (c) through (f). This loop is based on the input (actually it goes one less than the size
of the input, but constant adjustments of this nature do not affect the complexity result).
The loop increments a constant amount at each step. Therefore, this algorithm is O(n),
linear time. That is a better time complexity than the previous algorithm.

7. Problem: Your company has a records processing algorithm which runs overnight to pro-
cess the day’s sales. When the algorithm was first implemented, there were about 20 sales
a day, and the algorithm took about five minutes to run. A few months later, daily sales
averaged about 100 per day, and you notice the algorithm is now taking about two hours
to run. The newly hired sales manager claims she can triple the company’s sales. If she
does, will the algorithm still finish in time for business open at 8:00AM if it is started at
5:00PM when the business closes?
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Solution: First, identify the time complexity of the algorithm. Only two data points make
time complexity identification an inexact art; however, we can assume that there is limited
constant overhead.

If the algorithm were linear time, and took 5 minutes to process 20 sales, then we would
expect 10 minutes to process 40 sales, 20 minutes to process 80 sales, and 40 minutes to
process 160 sales. The algorithm is taking much more time than that, so it is probably
worse than linear time.

On the other side, consider exponential time. Exponential time algorithms take twice as
long for each additional element. So if the algorithm took 5 minutes to process 20 sales,
then we would expect 10 minutes to process 21 sales, 20 minutes to process 22 sales, 40
minutes to process 23 sales, and so on. A reasonable amount of extrapolation shows that if
the algorithm were exponential, there is no way it would be completing 100 records in our
lifetime.

So the algorithm must be better than exponential. This leaves the polynomial times. If the
algorithm were quadratic, then a doubling of input size would result in about four times
longer to process. Thus, if the algorithm took 5 minutes to process 20 sales, then we would
expect 20 minutes to process 40 sales, 80 minutes (1.3 hours) to process 80 sales, and 320
minutes (5.3 hours) to process 160 sales.

The actual data shows that 100 sales took 2 hours, suggesting quadratic O(n2) is likely the
algorithm’s time complexity. We can check this result by noting the factor of difference of
the two sample inputs (number of sales) is 5 (20∗5 = 100), and therefore the time difference
should be approximately 52 = 25 times. Indeed, 5 ∗ 25 = 125, very close to the 120 minutes
measured.

Following this reasoning, if the sales volume is tripled to 300, we expect about 32 = 9 times
longer will be required. 120 ∗ 9 = 1080 minutes, or 18 hours will be required. This time
exceeds the available time between close and open the next business day.

8. Problem: Given the previous solution, Mike the IT guy notes that all sales are currently
being processed on one server. He proposes buying several more servers (which perform
at the same speed as the current server) to distribute the load.

(a) Assuming the load can be equally distributed between servers, how many servers
would be required to complete the job in time?

(b) If the total sales per day increases to 400, how many servers would be required to
complete the job in time?

Solution: We will assume that 300 sales will take 18 hours to process on one server. The
actual time allotted is from 5:00PM to 8:00AM the next day: 15 hours. If the company buys
just one more server, each of the two servers can work for a little over 9 hours each night
to complete the task.

To determine the load requirement if the total sales increased to 400, first note that
400

300
≈
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1.3. Applying quadratic time formula, 1.32 ≈ 1.8, so the total time required is about 32
hours; a total of three servers would be required.



Appendix B
Bibliography

Many excellent sources were consulted in the writing of this text, and further study of any or all
of the topics therein is recommended to the interested student.

The ⋆ symbol indicates a source highly recommended.

B.1 Wikipedia

Although the practice of citing Wikipedia as a source is often frowned upon, the fact remains that
Wikipedia is an excellent source of general information, especially relating to technical fields. Er-
rors have, on occasion, been found (by myself included) and certainly are occasionally intention-
ally introduced by vandals. However, the value of Wikipedia in its broad and detailed coverage
of every topic in this book cannot be overlooked.

Glossary words make excellent starting searches on Wikipedia is more detail if desired.

If concern about the validity of statement on Wikipedia is raised, check the edit history to see if
the statement is a recent addition or long-standing. Long standing statements are more agreed
upon by readers and editors. Also worth checking is the topic’s discussion page, where debate
over the validity of claims, and possible concerns of errors, are voiced. Finally, most computer
and mathematical oriented claims can be directly tested. If unsure about the validity of a claim,
devise a test to determine if it works.
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B.2 Websites

Anderson, Sean E. “Bit Twiddling Hacks” Retrieved from
http://graphics.stanford.edu/∼seander/bithacks.htmlA collection of bitwise op-
erations that quickly calculate a wide variety of results.

⋆ Azad, Kalid. “Easy Permutations and Combinations” Retrieved from
http://betterexplained.com/articles/easy-permutations-and-combinations/
An easy to follow discussion of how permutations and combinations work.

Bigelow, Ken. “Digital Logic” Retrieved from
http://www.play-hookey.com/digital/
As the name implies, this website is a collection of circuits which can be built from basic logic
gates.

Finley, Thomas. “Two’s Complement” Retrieved from
http://www.cs.cornell.edu/∼tomf/notes/cps104/twoscomp.html
Describes how to perform Two’s Complement, and includes an extra section “Why Inversion
and Adding One Works”

Goldberg, David. “What Every Computer Scientist Should Know About Floating-Point Arith-
metic” Retrieved from
http://docs.sun.com/source/806-3568/ncg goldberg.html
An in-depth analysis of binary floating point and its limitations.

Hollasch, Steve. “IEEE Standard 754 Floating Point Numbers” Retrieved from
http://steve.hollasch.net/cgindex/coding/ieeefloat.html
A good discussion of floating point without excessive detail.
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Appendix C
Glossary

A
Accumulator a variable which stores intermediate results

of an aggregation, usually a sum, 212

Additive Counting Rule When selecting just one item from several
sets, the total number of possibilities is the
sum of the cardinalities of the sets, 9

Algorithm a step-by-step process to solve a certain
problem or class of problems, 198

Alpha a component of a color indicating how
translucent it is, 141

Alpha Blending mixing a translucent color over a back-
ground to determine the actual color to dis-
play at that location, 141

ASCII short for American Standard Code for Infor-
mation Interchange, a 7 or 8 bit encoding
of English letters, digits, punctuation, and
other symbols, 123
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Associative a function that, in a sequence of that func-
tion, the arrangement of parentheses can be
changed without changing the final result,
28

B
Base number of symbols or digits in a particular

number system, 91

Berger Code error detecting code capable of detecting any
number of errors as long as all errors are of
one type (such as 1 to 0), 159

Bias the amount a stored value is offset from its
actual value, 114

Big-Oh short for “biggest order”, indicates the most
significant complexity term, with coeffi-
cients dropped, 225

Binary base 2 number system with digits 0 and 1, 91

Binary Operator an operator that takes two inputs, 39

Binary Search a search technique for ordered lists which
cuts the search space in half at each space,
227

Binomial Coefficient Formally, coefficient of the xr term in the
polynomial expansion of (1+x)n. Practically,
the number of ways to select r items from a
set of n, 10

Bit binary digit, a single number with the value
0 or 1, 91

Bit Mask a series of bits that are manipulated using
bitwise operations, usually to define por-
tions of number as usable or not, 149

Boolean a 2-valued object, whose values are usually
represented as yes/no, true/false, or 1/0, 37
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Boolean Flag a Boolean variable which starts out at one
value (usually false) and switches value in
one direction only (usually to true) under a
variety of conditions, 57

Burst Error a contiguous sequence of bits all of which
are incorrect, 156

C
Cardinality the number of elements in a set, 4

Character Encoding a transformation which describes how to
store a particular code point in memory or
on disk, 125

Clock a regular pulse signal which synchronizes
the activities of logic circuits throughout a
component, 192

Code Point a number which represents a specific symbol
in Unicode, 125

Code Rate a measure of the overhead of an error detec-
tion or correction code, 156

Color Depth bits per pixel in an image, 138

Color Model a technique for representing colors using a
collection of numeric values, 132

Combination A selection of items from a set where the or-
der of selection is not important, 12

Commutative a function whose order of parameters can be
swapped without changing the final result,
29

Complement the set of all the elements in the universe that
do not appear in the original set, 4
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Complexity Class formula describing how the running time
(or memory usage) of an algorithm changes
relative to changes in the size (or quantity)
of input, 225

Contradiction a Boolean expression that is never true re-
gardless of input values, 48

Control Structure a technique which determines how or in
what order instructions are processed, 199

Corner Case occurs when system input is technically le-
gal but unexpected, at the edge of an allow-
able range, or otherwise unusual, 209

Counter a variable changed by a fixed amount at each
iteration of a loop, 207

D
D Latch one bit memory cell which holds the given

data when the clock input is true, 192

Decision Table a logical table expressing and analyzing con-
ditions and actions for a certain problem do-
main, 62

Decoder logic circuit that converts from input into
one output representing the input’s binary
value, 188

DeMorgan’s Law a complement can be distributed into an ex-
pression if the union and intersections are
flipped, 30

Disjoint two sets that do not share any elements in
common, 5
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Disjunctive Normal Form a series of subexpressions all connected by
OR operators. Each subexpression must
consist of a series of distinct variables, each
one possibly prefaced with a NOT, that are
connected with ANDs. Also called Sum of
Products., 45

Distributive a function that, applied to a parentheses
group can be distributed into and applied
individually to each element within that
group, 29

Double Dabble a shift and add algorithm to translate binary
into BCD, 109

Double Negation the opposite of the opposite of any expres-
sion is itself, 29

E
Edge Triggered Flip Flop a memory cell which acquires a value only

at the moment the clock input changes, 193

Empty set the set containing no elements, 2

Encoder logic circuit that converts from one input
line into an equivalent binary number, 187

End of File abbreviated EOF or EOS (end of stream), a
Boolean condition that indicates when no
more values remain to be read from a list,
212

Equivalent two sets which contain the same elements
are equivalent, 3

Error Correcting Code a technique for encoding a sequence of bits
such that certain kinds of transmission er-
rors can be detected, and in some cases, au-
tomatically corrected, 155

Extended ASCII any 8-bit or more extension of ASCII encod-
ing, 124
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F
Factorial the product of integers from 1 up thru some

given number, indicated by the exclamation
point, 10

Finite Set a set containing a limited (although possibly
very large) number of elements, 2

Flag a Boolean variable which indicates if a cer-
tain condition has occurred, 215

Flag a bit which indicates the presence or absence
of a particular condition or setting, 147

Floating Point representation of a number using a form of
scientific notation, where the position of the
decimal point is separated from the numeric
digits, 112

Font a set of symbols which represent various
code points, 127

Full Adder logic circuit that can add three bits, 173

G
GIF Graphics Interchange Format, an 8-bit lose-

less compressed image format popular for
small animations, 140

H
Half Adder logic circuit that can add two bits, 171

Hamming Code a simple error correcting code that can cor-
rect one error, 160

Hamming Distance given two bit sequences of equal length, the
number of positions in which the values dif-
fer, 156
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Heuristic an algorithm that approximates a solution,
usually in much less time than it would take
to find an exact solution, 235

Hexadecimal base 16 number systems with digits 0, 1, 2, 3,
4, 5, 6, 7, 8, 9, A, B, C, D, E, F, 92

I
Idempotent a function that, given two equal values, re-

turns that value as the result, 28

Identity a function that, given any parameter, returns
that value as the result, 29

Implication an expression “a implies b” is true if, when-
ever a is true, b is guaranteed to be true. If a
is false, b is irrelevant and the implication is
automatically true, 41

Implicit Bit the leftmost one in binary normalized expo-
nential form that is assumed to be present
but not actually stored, 114

Indifferent Condition a condition whose value does not matter for
certain rules, 65

Infinite Loop a loop whose body does not change the loop
condition, causing the loop to repeat contin-
uously, until the program is manually termi-
nated, 205

Infinite Set a set containing an unlimited number of ele-
ments, usually defined mathematically, 2

Integer positive or negative whole number, 100

Intersection the set of all elements that appear in both of
the original sets, 4

Invert in a binary sequence, replace all 1s with 0s,
and all 0s with 1s, 103
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Iteration a single run through the loop body, 205

L
Law of Excluded Middle for any Boolean expression or value x, ex-

actly one of x and ¬x must be true, and one
must be false, 54

Linear Search checking each element in a sequence one at
a time, from beginning to end, until the de-
sired element is found or the end is reached,
225

Logic Circuit Boolean operations, indicated with specific
symbols, connected with wires which show
order of operation, 73

Loop Body the task(s) or structures run repeatedly
while or until a condition is met, 205

M
Multiplicative Counting Rule When selecting one item from each of sev-

eral sets, the total number of possibilities is
the product of the cardinalities of the sets, 10

N
Nested Loop a loop within the body of another loop, 212

Number System a notation for representing numbers using
symbols, 90

O
Octal base 8 number systems with digits 0 through

7, 92

Overflow condition caused when the result of an arith-
metic operation is too large for the number
of bits available, 102
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P
Palette a selection of colors available for use in an

image, 140

Parity Bit a bit making the number of 1 bits in a mes-
sage even or odd, as selected, 158

Partition Rule A technique for counting the number of pos-
sible divisions of some set into various un-
equal groups, 17

Permutation A selection of items from a set where the or-
der of selection is important, 12

Pixel the smallest component of an image that a
device displays or prints, 132

Priority Encoder an encoder which outputs the binary value
equivalent to the highest active input line,
187

Proper Subset all of the elements of a set are contained
within another set, and the other set also has
at least one additional element, 6

R
Raster image data stored as a rectangular grid of

colors, 131

Reuse using a single block of code, expression, or
part of a circuit for several purposes. Also
referred to as “DRY”, short for “Don’t Re-
peat Yourself”, 83

S
Satisfiable a Boolean expression that is true for at least

one permutation of input values, 49
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Set an unordered collection of items without du-
plicates, 2

Set Difference the set of all elements that appear in the first
set but not the second set, 22

Short-Circuit Evaluation portions of a Boolean expression may be
skipped (unevaluated) if it is known that
their value will not affect the final result, 40

Significand portion of a floating point number consist-
ing of the significant digits, 114

SR Latch simple one bit memory cell which set either
be Set (true) or Reset (false), 190

Subnormal Number non-normalized numbers that fill in near
zero to help avoid truncating to zero, 117

Subset all of the elements of a set are contained
within another set, 6

Symmetric Difference the set of all elements that appear in the first
set or the second set, but not both, 22

T
Tautology a satisfiable Boolean expression that is al-

ways true, 49

Traveling Salesman Problem an optimization problem which requests the
ideal route between a series of locations, 234

Truth Table a table indicating the true/false result of a
Boolean expression for all possible permuta-
tions of input values, 37

Two’s Complement most common system for representing
signed integers in binary; conversion be-
tween positive and negative is achieved by
inverting and adding one, 103
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U
UCS-2 an early Unicode encoding which repre-

sented each code point with 16 bits, 125

Unary Operator an operator that takes only one input, 39

Undefined Behavior actions may or may not occur when the con-
ditions are not specified by a decision table,
70

Unidirectional Error an error that can only occur in one direction;
such as flipping a one to a zero, but not the
other way around, 156

Union the set of all elements that appear in either
or both of the original sets, 4

Universal Logic Gate a gate that can implement any other logic
gate or circuit, 77

Universe the set containing all possible items under
consideration, 2

UTF-8 modern Unicode encoding which is back-
wards compatible with 7 bit ASCII and can
represent code points up to U+10FFFF, 126

V
Vector image data stored as a collection of shapes,

131

Venn Diagram a visual representation of a set expression, 19
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